

KE Texpress

SDI Guide

KE Software Pty Ltd

Copyright © 1993 - 2004 KE Software Pty Ltd
This work is copyright and may not be reproduced except
in accordance with the provisions of the Copyright Act.

 3

Selective Dissemination of Information
A new program has been developed to provide Selective Dissemination of Information
(SDI) facilities. SDI enables users to register query profiles which are automatically
compared with all new information entered into a database. If a match is found,
various different actions can be taken.

3.1 SDI Implementation
A typical implementation of SDI is shown in Figure 2.

 4

The basic components of this configuration are as follows:

Main Database
This is the database, typically some sort of archive, upon which SDI operates.

Query Profile Database
This is the database which stores the users' query profiles. Its Insertion form generally
appears the same as the Query form of the Main Database.

Duppath File
All changes made to the Main Database are automatically copied to the duppath file
using the duppath=file option which must be set on the Main Database.

Notify File
When a profile matches a record inserted into the Main Database, then information
from the profile and the record is written to the notify file. Any other program can be
used (or developed) to process the information loaded into this file and perform
actions such as notifying users, etc.

texsdiagent
This process runs continuously (and in background) draining information from the
duppath file, matching it against the stored profiles in the Query Profiles Database and,
where appropriate, writing information from the Main Database and the Query Profile
Database into the notify file.

The texsdiagent command requires several options. It can be invoked by a command
of the format:

texsdiagent [-aform] [-pform] [-tfile] archive infile profile outfile

where the compulsory arguments are:

archive the name of the Main Database on which SDI is to be performed.

infile the name of the duppath file.

profile the name of the Query Profile Database.

outfile the name of the notify file.

and the optional arguments are:

-aform the name of the Report form to be used to copy information from the archive
or Main Database record to the notify file. If this option is omitted, the
Insertion form of the Main Database is used.

-pform the name of the Report form to be used to copy information from the Query
Profile record to the notify file. If this option is omitted, the Insertion form of
the Query Profile Database is used.

-tfile the name of the temporary file used while it processes the information from
the duppath file. If this option is omitted, a temporary file name is derived
from the name of the duppath file. This option is useful if the texsdiagent
process should become a bottleneck (i.e. not be able to keep up with the flow

 5

of information from the Main Database) and it should become necessary to
run a second texsdiagent simultaneously. It is most unlikely that this option
will be required.

There are several design requirements which must be satisfied before profiling can
be successfully implemented. These include the following:

o The Query Profile Database must have the database option, profile=yes, set.
This changes the structure of the index. If this option is set on an existing
database, then that database must be reconfigured and have its index rebuilt.

o The matching of profiles against records from the Main Database is performed
using all items from the Query Profile Database which have the same item Id
as an item in the Main Database. All other items from each database are
ignored during the comparison.

o The Query Profile database must only have indexing selected for items which
have the same item Id as an item in the Main Database. The indexing type
(stemming, phonetic, etc.) and the field type attributes (such as text, string,
etc.) should also be the same.

o Privilege levels of profiles and records from the main database are observed.
The privilege level of the stored query profile must be less than or equal to
(more privileged than) the privilege level of the record from the Main
Database.

 6

3.2 Notification
There are several methods by which users can be notified of the arrival of information
matching one of their profiles. The Notify File is a text file the contents and format of
which are controlled by the Report forms used as arguments to texsdiagent. This file
can be processed by any program. It should be noted, however, that the Notify File
should be drained as it is processed and locking of this file should also be observed.

Method 1
There are several tools which assist in building a notification facility. The first is the
program, texdrain, which can be used to drain a file, while observing the locking on
that file, and pass the information to its standard output. This program can be run on
the Notify File and can be piped into another program or shell script to perform the
actual notification.

The texdrain program can be invoked by a command of the format:
texdrain [-iot] [-rretries] [-sdelay] infile outfile

where the infile argument is the Notify File and the outfile should be – to indicate
standard output. Options are as follows:

-i Lock input file before reading data.
-o Lock output file before writing data.
-t Continually check input file for data.
-sn Wait n seconds between checks on input.
-rn Try to get lock n times.

For an SDI setup the typical use of texdrain would be as follows:
texdrain - it infile –

Typically, a shell script is used to process the information passed from texdrain. This
script generally identifies the name of the user who owns the profile (part of the
Report form from the Query Profile database used by texsdiagent) and sends
interactive notification and electronic mail to this user. The script can make use of any
standard Unix facilities, such as write and mail.

A tool is provided for interactive notification. This tool is similar to the Unix utility,
write,. The program is called texnotify and instead of writing to any one of a user's
terminals, it searches for the most recently accessed terminal to which it has
permission to write. Thus if users are likely to be logged in on several terminals
simultaneously, texnotify will "follow" them around as they move from terminal to
terminal.

The texnotify command can be invoked by a command of the format:
texnotify [-fnrs] [-tn] user [file]

where the arguments are as follows:

 7

user send the information to the Unix user, user. If this user is not currently logged
in, then texnotify silently exits.

file take information from file to send to the user. If this argument is omitted, the
standard input is read.

-f send the information to the first terminal to which it can write, instead of
searching for the most recently accessed terminal. This is likely to be a little
more efficient, particularly where users are not likely to be logged in more than
once simultaneously.

-n prevent the bell from ringing when the message is sent.

-r remove the file, file, after it has been sent.

-s the silent option - do not send a header identifying the source of the message.
In profiling applications, the source is generally obvious from the content of
the message.

-tn the number of seconds before timing out on writing to the terminal.

Method 2

Another method for notification of users is to use a third database to hold and process
the notifications. This method uses texload with the -t option to continuously drain the
Notify File and load records into the Notification Database. These records generally
consist only of the Key value of the record from the Main Database and the Key value
from the Query Profile record. These enable the Notification Database to link to and
access all of the information in the appropriate query profile and the record which
matched the profile.

A variety of different actions can be performed as side effects in the validation of each
record inserted into the Notification Database. These actions can include copying
information to a file using copyform() and then using the system() call to perform
actions like texnotify, mail, etc.

The records loaded into the Notification Database can be retained for the
user to peruse at some later date.

	Method 2

