

Copyright © 2009 KE Software Pty Ltd
This work is copyright and may not be reproduced except

in accordance with the provisions of the Copyright Act

EMu Documentation

Statistics
Document Version 1

EMu Version 4.0

Statistics i

Contents
S E C T I O N 1 Statistics Facility 3

Overview 3
Statistics Module 4

Reporting 7
Periodic Tasks 10

emuperiodic 11
Tasks 13
Creating a new period 18
Regenerate missing data 19

S E C T I O N 2 Appendix A - KE::Statistics perl module 21

Name 21
Synopsis 22
Description 23

KE::Statistics::Session 24
Methods 25

KE::Statistics::ResultSet 27
Methods 28

KE::Statistics::Date 29
Methods 30

KE::Statistics::Statistics 33
Methods 34

Bugs 36
See Also 37

 Statistics

Statistics 3

S E C T I O N 1

Statistics Facility

Overview
As institutions continue with their EMu implementations the question of statistical
analysis of system operations and data content inevitably arises. System
administrators and managers require reports showing the number and type of
operations performed on a per user basis, e.g. the number of insertions into the
Catalogue module on a daily basis for the past month listed by user. The answer to
this request is found in the records in the Audit module. In order to produce the
information in a reportable format it is necessary to perform a number of searches
of the Audit information and collate the results into a spreadsheet, which can then
be graphed or tabulated. The process may be quite time consuming and tedious,
and if the same information is required again at a future date, the same steps need
to be repeated to get the same results.

EMu 4.0.01 introduces a Statistics facility that allows statistical information to be
generated on a regular basis (hourly, daily, weekly or monthly) and stored in the
Statistics module for later use. System administrators and managers need only
search the Statistics module to locate the information they require and then
produce a report (Excel Pivot table) from which tables and graphs may be
generated.

The Statistics facility consists of two parts:

• Statistics Module
The Statistics module contains records with computed statistical values. Each
record contains one value, a floating point number, that represents the result
of a statistical criteria. For example, a value of 10 may indicate the number of
records inserted by user james into the Catalogue module on 17 February
2009. A standard EMu module interface is provided to the Statistics module.
An Excel report is supplied that presents the records in a Pivot table for
further manipulation.

• Periodic Tasks
In order to provide useful statistical information it is necessary to have
statistic records generated at regular intervals, removing the need for
information to be obtained manually. The Periodic Tasks facility implements
a framework in which individual tasks (scripts) can be placed and executed on
a regular basis. It is the purpose of the tasks to generate statistical records by
examining the various system reports and data within an EMu
implementation. Periodic tasks can be run on an hourly, daily, weekly or
monthly basis. It is possible to add new periods (e.g. fortnightly) if required.

Statistics Facility Statistics Module

4 Statistics

Statistics Module
EMu 4.0.01 sees the addition of the Statistics module. Designed to hold statistical
data, the module stores one statistical value per record. The value is computed by a
task, which is charged with creating the record. Administrators can search the
module to retrieve sequences of records used to produce reports.

The module consists of a Statistics tab that contains all the information about the
statistical data. The other tabs are:

• Security - controls access to the data.
• Audit - lists auditable operations performed on the record.
• Admin - contains record creation and modification dates/times.

The Statistics tab stores three discrete pieces of information:

• Keys and Value
The Keys describe the type of statistical value stored in the record. A record
consists of a number of hierarchical keys in which each level defines a
variable piece of information for the statistic generated. The top level is
reserved for the type of record. In the image above the first Key has a value of
Number of Records By Table (daily). Three pieces of information are
contained within the title:
i. The Value of the record is a record count (Number of Records).
ii. The record count is generated on a per table basis (by Table).
iii. The Value is generated daily (daily).
The second Key (elocations) indicates the table for which the record count
applies. Thus, the record above contains the number of records in the
elocations table generated daily. In general, the title of the record should use
the word by to indicate what variables are contained within the record. For

Statistics Module Statistics Facility

Statistics 5

example, a title of Audit Statistics by Operation by Module by User
(daily) would indicate that the record contains a count of the number of
audit operations (insertions, edits, deletions, etc.) on a per table basis for each
individual user. The Value represents the number of operations on a daily
basis. Given this title, Key 2 would contain the audit operation type, Key 3 the
table name and Key 4 the user name.
The Value is a floating point number containing the numeric value defined by
the Keys. In most instances the Value is an integer, however if averages are
computed, the fractional part may be required.

• Dates

Three dates are provided: depending on the period of the statistical record,
some or all of them may be filled:
• Exact - filled for data that is gathered within a single day (daily and

hourly).
• From - the commencement date for the period. A commencement date

should always be supplied.
• To - the completion date for the period. A completion date should always

be supplied. If the period is a day or less, the commencement and
completion dates are the same as the Exact date.

The date fields are used to define the day or range of days covered by the
statistical value. The values are very useful when performing searches to
gather statistical information for reporting.

Statistics Facility Statistics Module

6 Statistics

• Times
Three times are provided: depending on the period of the statistical record,
some or all of them may be filled:
• Exact - filled for data that is gathered at a single point in time. Some

hourly records represent a value at a fixed point in time, e.g. the number
of users accessing the system. As this value represents the count at a fixed
point in time, the Exact time field should be filled.

• From - the commencement time for the period. A commencement time
should be supplied for tasks that are within a day (e.g. hourly).

• To - the completion time for the period. A completion time should be
supplied for tasks that are within a day.

The time fields are used to define the point in time or range of time covered
by the statistical value. If the value period is a day or longer, the time fields
should be left empty. The values are very useful when performing searches to
gather statistical information for reporting.

Statistics Module Statistics Facility

Statistics 7

Reporting
The main reason for gathering statistical information is to produce reports. Reports
may be tables of data, or more graphical representations such as charts may be
used. The Statistics module provides one report only, the Excel based Statistics
Pivot Table report. Before we can produce a report, it is necessary to retrieve the
data on which to report. The steps below outline the process required to produce a
statistical report:

1. Open the Statistics module by selecting the Statistics
button in the Command Centre.

2. Select the Lookup List button for Key 1. A list of all the statistical data
maintained by the system is displayed:

3. Select the entry for the report type to be produced, e.g. Logins by User

(monthly).
4. If reporting on a single user or list of users as opposed to all users, the Key 2

Lookup List could be used to select the required user names. In general, if a
specific value or list of values is required for any given Key, the associated
Lookup List can be used to select the values. If all values are to be reported,
the Key should be left empty. In this example we want to report on the
number of logins on a user basis for all users, so we leave Key 2 empty.

5. Specify the date range for on which to report. In general this requires
specifying a From date and a To date. In this example we want all records for
January and February 2009:

Statistics Facility Statistics Module

8 Statistics

6. Perform the search to retrieve the required statistical records.
7. Select Tools>Reports from the Menu bar to display the Reports dialogue box

and select the Statistics Pivot Table report:

8. Select Report All to generate the report.
An Excel report will display.

 The report requires macros to be enabled so that a graph of the data can be
produced.

Statistics Module Statistics Facility

Statistics 9

Various tables and graphs can be produced as the data is now in a pivot table,
based on the different Key values supplied.

Once all the statistical information has been added to the Excel pivot table it is
possible to manipulate any of the statistical variables by either restricting values or
enabling all values. Pivot tables are extremely powerful and provide a very
convenient mechanism for the production of reports with multiple statistical
variables.

While Excel is the recommended tool for manipulating statistical data, it is
possible to use any other reporting mechanism. If specialised output is required, it
is possible to use Crystal Reports to produce the finished report. In this case it is
recommended that the report is named after the type of statistical information it
expects to receive.

Statistics Facility Periodic Tasks

10 Statistics

Periodic Tasks
So far we have examined the new Statistics module, learned how to search for
statistical information and considered the reporting options available. Next we
explore how statistical information is generated.

In order to create useful reports, it is necessary to populate the Statistics module
with meaningful records. In the simplest case it is possible to create statistic
records manually by collating system information and inserting new statistic
records with the required keys, dates, times and value. However it would not take
long before someone forget to add the required records thus rendering the analysis
incomplete.

The Periodic Tasks facility provides a framework in which tasks can be executed
on a regular basis. Each task is a perl script generating one or more records for
insertion into the estatistics table. At the heart of the framework is the
emuperiodic program.

Periodic Tasks Statistics Facility

Statistics 11

emuperiodic
The emuperiodic script is run at regular intervals to generate statistical
information. Its primary purpose is to invoke all the task scripts for a given time
period (hourly, daily, weekly, monthly). The usage message for emuperiodic is:
Usage: emuperiodic [-q] [-d yyyy:mm:dd[:HH:MM:SS]] period

where:

 -d yyyy:mm:dd[:HH:MM:SS] is the date to use for periodic tasks.
 -q specifies quiet mode, i.e. do not output

progress.
 period specifies the time period for which

statistical data is generated. Allowable
values:

• daily
• hourly
• monthly
• weekly

Extra periods may be added, e.g.
fortnightly, as required.

The Unix task scheduler cron is used to execute emuperiodic at the required
intervals. The crontab entries used to invoke emuperiodic are:

Run periodic tasks

30 * * * * /home/emu/client/bin/emurun emuperiodic hourly 2>&1 |
/home/emu/client/bin/emurun emulogger -t "KE EMu Periodic Tasks
Report" periodic
0 6 * * * /home/emu/client/bin/emurun emuperiodic daily 2>&1 |
/home/emu/client/bin/emurun emulogger -t "KE EMu Periodic Tasks
Report" periodic
30 6 * * 0 /home/emu/client/bin/emurun emuperiodic weekly 2>&1 |
/home/emu/client/bin/emurun emulogger -t "KE EMu Periodic Tasks
Report" periodic
0 7 1 * * /home/emu/client/bin/emurun emuperiodic monthly 2>&1 |
/home/emu/client/bin/emurun emulogger -t "KE EMu Periodic Tasks
Report" periodic

Statistics Facility Periodic Tasks

12 Statistics

The table below shows when each instance of emuperiodic is executed:

Command Executed

emuperiodic hourly 30 minutes past the hour being analysed.
emuperiodic daily 6 hours past the day being analysed.

emuperiodic weekly 6 hours and 30 minutes past the week being
analysed, on the Sunday morning.

emuperiodic monthly 7 hours past the month being analysed.

All output from running periodic tasks is sent to emulogger which places the
output into a file based on the current date (yyyy-mm-dd) in the logs/periodic
directory. The log files provide a useful starting point if you suspect a problem
with the execution of periodic tasks. As you can see, each task period is invoked
after the time period for which it is generating statistics. The execution is delayed
in order to allow any activities started in the task period to complete before the
periodic tasks are run. It is also important to ensure that any system maintenance
routines are not running while periodic tasks are executing, otherwise access to
required tables may be denied.

When emuperiodic is invoked it looks for periodic tasks stored in either:

• etc/periodic/period
-OR-

• local/etc/periodic/period
where period is the argument supplied to emuperiodic (e.g. hourly). Each
task is a perl script with a .pl (perl library) extension. If more than one task is
found in the above directories, each task is executed sequentially in
alphabetical order. Tasks in local/etc/periodic override scripts with the
same name in etc/periodic.

Periodic Tasks Statistics Facility

Statistics 13

Tasks
Each task is a perl function called by emuperiodic to generate statistical
information. The bare-bones perl required for a task is:
#!/usr/bin/env perl

Copyright (c) 1998-2009 KE Software Pty Ltd

use strict;
use warnings;
use KE::Statistics;
no warnings 'redefine';

Calculate the number of records per table.

sub
Periodic
{
 my $session = shift;
 my $date = shift;
 my $period = shift;

 #
 # Insert task code here
 #

}

emuperiodic calls the function Periodic($session, $date, $period) within
the task script. The script then generates the statistical data and creates the
required estatistics record(s). The arguments to Periodic() are:

$session A KE::Statistics::Session object provides a connection to
the back-end database environment. The object may be used to
gather information to generate statistical values and to create
estatistics records.

$date A KE::Statistics::Date object contains the date and time at
which emuperiodic was invoked. The $date object is used to
determine the date/time range of the statistical information for the
task invoked.

$period A string that contains the name of the time period for the task
being run. Typical periods include hourly, daily, weekly and
monthly. Administrators may create new periods (e.g. fortnightly)
as required, in which case $period will contain the name of the
new period.

A perl module is provided to help with the creation of estatistics records and the
generation of statistical values. The module is KE::Statistics and must be
included in a task to gain access to its objects (via use KE::Statistics;). The

Statistics Facility Periodic Tasks

14 Statistics

module provides a suite of classes to manipulate statistical information. The
classes are:

KE::Statistics::Session
(page 24)

A KE::Statistics::Session object is
used to gather information from the back-
end server. The object may query any table
or set of tables to allow statistical
information to be generated. A set of
methods allow information about the server
environment to be gathered (e.g. list of
registered users, list of tables, etc.).

KE::Statistics::ResultSet
(page 27)

A KE::Statistics::ResultSet object is
returned by the
KE::Statistics::Session-
>search($texql) method. The object
provides access to the records returned as a
result of the specified query.

KE::Statistics::Date (page
29)

The KE::Statistics::Date object makes
the manipulation of dates easier. The object
contains a breakdown of a date ({year},
{month}, {day}, {hour}, {minute} and
{second}). A number of methods are
provided that allow the date/time to be
manipulated.

KE::Statistics::Statistics
(page 33)

The KE::Statistics::Statistics object
is designed to provide easy insertions into
the estatistics table. A Statistics object
allows the columns within a record to be set
and the record written. A check is made to
see if the record already exists in the table
and if so an update is performed rather than
an insertion. This allows periodic tasks to be
re-run to refresh data without duplicate
records being created.

Periodic Tasks Statistics Facility

Statistics 15

The task script below is used to generate the number of records on a per table basis
each day:

#!/usr/bin/env perl

Copyright (c) 1998-2009 KE Software Pty Ltd

use strict;
use warnings;
use KE::Statistics;
no warnings 'redefine';

Calculate the number of records per table.

sub
Periodic
{
 my $session = shift;
 my $date = shift;
 my $period = shift;

 #
 # Run texlist -l and parse the results
 #
 my %data;
 for my $line (split(/\n/, `texlist -l`))
 {
 my @bits = split(/\s+/, $line);
 $data{$bits[0]} = $bits[2];
 }

 #
 # Create a statistics object we can use to insert
 # statistics records.
 #
 my $stats = $session->statistics();
 my $yesterday = $date->yesterday();
 $stats->setDate($yesterday);
 $stats->setDateFrom($yesterday);
 $stats->setDateTo($yesterday);
 $stats->setKey1("Records by Table ($period)");

 #
 # Now add the data for each type of operation
 #
 for my $table(keys %data)
 {
 $stats->setKey2($table);
 $stats->setValue($data{$table});
 $stats->write();
 }
}

1;

Statistics Facility Periodic Tasks

16 Statistics

The example shows how it is possible to obtain a KE::Statistics::Statistics
object ($session->statistics()) and use it to create estatistics records. A point
of interest is that the three Date values are set to yesterday's date. As the task is
invoked 6 hours after the day has ended, it is necessary to use the date of the day
before.

The task below generates statistical data about the number of audit operations
performed on a per user and per table basis:
#!/usr/bin/env perl

Copyright (c) 1998-2009 KE Software Pty Ltd

use strict;
use warnings;
use KE::Statistics;
no warnings 'redefine';

Calculate user statistics for operations.

sub
Periodic
{
 my $session = shift;
 my $date = shift;
 my $period = shift;

 #
 # Zero the operations count for all users of all tables.
 #
 my $data = {};
 foreach my $user (@{$session->users()})
 {
 foreach my $table (@{$session->tables()})
 {
 foreach my $operation (@{$session-
>operations($table)})
 {
 $data->{$user}->{$table}-
>{$operation} = 0;
 }
 }
 }

 #
 # Get back all the records for the supplied date.
 #
 my $yesterday = $date->yesterday();
 my $query = "select AudUser, AudOperation, AudTable from
eaudit " .
 "where AudDate = DATE" . $session->quote() .
 $yesterday->dateText() . $session->quote();
 my $results = $session->search($query);
 die ("Invalid query $query") if (! defined($results));

 #

Periodic Tasks Statistics Facility

Statistics 17

 # Move through the results incrementing the appropriate
value
 # in the results table.
 #
 while ($results->next())
 {
 my $user =$results->text("AudUser");
 my $table =$results->text("AudTable");
 my $operation = $results->text("AudOperation");

 $data->{$user}->{$table}->{$operation}++;
 }
 $results->close();

 #
 # Create a statistics object we can use to insert
 # statistics records.
 #
 my $stats = $session->statistics();
 $stats->setDate($yesterday);
 $stats->setDateFrom($yesterday);
 $stats->setDateTo($yesterday);
 $stats->setKey1("Audit Statistics by Operation by Module
by User ($period)");

 #
 # Now move through the results table adding the
appropriate records
 # to the statistics table.
 #
 foreach my $user (keys(%{$data}))
 {
 $stats->setKey4($user);
 foreach my $table (keys(%{$data->{$user}}))
 {
 $stats->setKey3($table);
 foreach my $operation (keys(%{$data-
>{$user}->{$table}}))
 {
 $stats->setKey2($operation);
 $stats->setValue($data->{$user}-
>{$table}->{$operation});
 $stats->write();
 }
 }
 }
}

1;

The above task shows how the KE::Statistics::Session object can be used to
obtain information about the EMu environment (list of registered users, etc.) and
also query tables (eaudit table). For a complete description of all the methods
available in the KE::Statistics perl module please see Appendix A (page 21).

Statistics Facility Periodic Tasks

18 Statistics

Creating a new period
The Periodic Tasks facility is designed to be extensible: new periods can be added
as required. In this section we will add a new period that generates statistical
information on a quarterly basis. The steps required are:

1. Determine a name for the period, e.g. quarterly.
2. Create the directory in which the quarterly tasks will be stored, e.g.

local/etc/periodic/quarterly.
3. Add an entry to cron so that emuperiodic is invoked at a suitable time. The

entry for quarterly will look like:
0 7 1 1,4,7,11 * /home/emu/client/bin/emurun emuperiodic
quarterly 2>&1 | /home/emu/client/bin/emurun emulogger -t "KE
EMu Periodic Tasks Report" periodic

4. Add the quarterly tasks to local/etc/periodic/quarterly.

Statistics generate on a quarterly basis. Note that the quarterly tasks are run at 7:00
am the day after the quarter ends.

Periodic Tasks Statistics Facility

Statistics 19

Regenerate missing data
In some cases it may be necessary to generate statistic records for time periods that
have passed, for instance periods before the Periodic Tasks facility was installed.
It is possible to run emuperiodic using the -d option to specify the date passed
through to the period tasks. In effect, the -d option makes it possible to alter the
value of $date passed through to the Periodic() function. It is up to the task
itself to examine the date and generate the correct information, where possible.

The date specified with the -d option should correspond to the date and time at
which the original tasks would have been executed. For example, to run the daily
tasks for 15 February 2009, the following command should be used:
emuperiodic -d 2009:02:16 daily

Notice how the date given was for the next day as this corresponds to the date on
which cron would have invoked the daily tasks for 15 February 2009. By varying
the date supplied it is possible to generate statistical information for periods before
Periodic Tasks was installed. If a record already exists for the statistic generated,
the value is simply updated.

The generation of data for previous time periods is successful only if the data for
the period specified exists: it is not possible to generate auditing information if the
audit records do not exist for the period specified.

 Statistics

Statistics 21

S E C T I O N 2

Appendix A - KE::Statistics perl module
The KE::Statistics module provides a set of objects to make the creation of
tasks easier. The module is located in the utils/KE directory on the EMu server.
The code is documented using POD (plain old documentation). The information in
this Appendix was generated from the POD in the module.

Name
KE::Statistics - A set of objects usable by periodic scripts.

Appendix A - KE::Statistics perl module Synopsis

22 Statistics

Synopsis
use KE::Statistics;

sub
Periodic
{
 my $session = shift;
 my $date = shift;
 my $period = shift;

 my $users = $session->users();
 my $tables = $session->tables();
 my $operations = $session->operations("eregistry");

 my $query = "Select all from eregistry where Key1 = " .
 $session->quote() . "User" . $session->quote();
 my $results = $session->search($query);

 while ($results->next())
 {
 my $key = $results->text("Key1");
 ...
 }
 $results->close();

 my $stats = $session->statistics();
 my $yesterday = $date->yesterday();
 $stats->setDate($yesterday);
 $stats->setDateFrom($yesterday);
 $stats->setDateTo($yesterday);
 $stats->setKey1("Records By Table");
 $stats->setValue("3");
 $stats->write();
}

Description Appendix A - KE::Statistics perl module

Statistics 23

Description
The KE::Statistics module provides a set of objects to facilitate the generation
of records for the estatistics table. The Periodic Tasks subsystem provides a plug-
in mechanism that allows new tasks to be added to the existing framework. Each
task is contained within a perl library (.pl file) and must contain at least one
function, the Periodic($session, $date, $period) method.

The arguments are:

$session A KE::Statistics::Session object provides a connection to
the back-end database environment. The object may be used to
gather information to generate statistical values and to create
estatistics records.

$date A KE::Statistics::Date object contains the date and time at
which the Periodic Tasks subsystem was invoked. The $date
object is used to determine the date/time range of the statistical
information for the task invoked.

$period A string that contains the name of the time period for the task
being run. Typical periods include hourly, daily, weekly and
monthly. Administrators may create new periods (e.g.
fortnightly) as required, in which case $period will contain
the name of the new period.

The Periodic() function is called by the Periodic Tasks subsystem at a scheduled
time (e.g. hourly, daily, weekly, monthly, etc.) to create records in the estatistics
table.

The following objects are provided within the module:

Appendix A - KE::Statistics perl module Description

24 Statistics

KE::Statistics::Session
A KE::Statistics::Session object is used to gather information from the back-
end server. The object may query any table or set of tables to allow statistical
information to be generated. A set of methods allows information about the server
environment to be gathered (e.g. list of registered users, list of tables, etc.).

As a Session object is provided as an argument to the Periodic() function, it is
not necessary to create the object yourself, rather the supplied object should be
used (which is efficient as only one Session object is used by all tasks invoked in
the current execution). As the Session object is shared, you must not close() it
in your task.

Description Appendix A - KE::Statistics perl module

Statistics 25

Methods

new()
 $session = KE::Statistics::Session->new();

Creates a connection to the server environment. As the Periodic Tasks subsystem
provides a Session object to your task, it is not necessary to use this method. The
return value is an instance of a Session object.

search($texql)
 $results = $session->search("count(select all from eparties)");

Executes a TexQL query statement on the server. The $texql argument may be any
valid TexQL query statement. The return value is a KE::Statistics::ResultSet
object. If the query statement is invalid, an undef value is returned.

statistics()
 $stats = $session->statistics();

After your tasks have generated statistical information, it is necessary to write the data
into estatistics records. The KE::Statistics::Statistics object provides a
convenient object for creating estatistics records. The statistics() method returns a
Statistics object that may be used to create the records.

quote()
 $texql = "select all from eparties where NamLast contains " . $session-

>quote() . "Badenoff" . $session->quote();

When building TexQL statements, non-numeric values must be enclosed within quotes.
The quote character is configurable and is set to avoid escaping characters within
values. The default quote character is \001 (Ctrl+A). The quote() method returns the
current quote character.

close()
 $session->close();

Once all communication with the server environment is complete, the connection needs
to be closed so that system resources can be returned to other users. The close()
method terminates a Session connection. As the Periodic Tasks subsystem handles the
creation and closing of the session, you should not call this method.

users()
 foreach my $user (@{$session->users()})

The users() method returns a reference to a list of registered users in the server
environment. The list is built from records in the server registry (eregistry table).

tables()
 foreach my $table (@{$session->tables()})

The tables() method returns a reference to a list of tables in the server environment.
The Table Access Registry entry is used to build the list of tables.

Appendix A - KE::Statistics perl module Description

26 Statistics

operations($table)
 foreach my $operation (@{$session->operations("eparties")})

The operations() method returns a reference to a list of audit operations enabled for
the table supplied in the $table argument. The list returned is populated by operations
defined by texaudit. Use texaudit -h to get a complete list of the available
operations.

Description Appendix A - KE::Statistics perl module

Statistics 27

KE::Statistics::ResultSet
A KE::Statistics::ResultSet object is returned by the
KE::Statistics::Session->search($texql) (page 25) method. The object
provides access to the records returned as a result of the specified query. Once you
have finished dealing with the ResultSet object, it is necessary to close() it so
that system resources can be returned to other users.

Appendix A - KE::Statistics perl module Description

28 Statistics

Methods

new()
 $results = KE::Statistics::ResultSet->new($cursor)

A ResultSet object provides a convenient mechanism for dealing with a query cursor
($cursor). The cursor is returned by the server environment when a search has
completed. As a ResultSet object is returned by KE::Statistics::Session-
>search($texql) (page 25), it is not necessary to create instances of ResultSet
objects.

next()
 while ($results->next())

When a ResultSet object is returned by KE::Statistics::Session-
>search($texql) (page 25), the current record is positioned before the first record.
The next() method moves the current record position to the next matching record. A
value of 0 is returned if you are past the last matching record, otherwise 1 is returned.

text($column)
 $value = $results->text("NamLast");

The text() method returns the value for the column specified by $column argument.
The value is returned as a string. If the column does not exist, an undef value is
returned.

close()
 $results->close();

Once you have finished with the records in the ResultSet object, you should
close() (page 25) the object so that server resources are returned to users. If you do
not close a ResultSet object, it will be closed by the Periodic Tasks subsystem once it
has completed processing all tasks.

Description Appendix A - KE::Statistics perl module

Statistics 29

KE::Statistics::Date
In order to make the manipulation of dates easier, the KE::Statistics::Date
object is provided. The object contains a breakdown of a date ({year}, {month},
{day}, {hour}, {minute} and {second}). A number of methods are provided that
allow the date/time to be manipulated.

To help with arithmetic manipulation of dates the julianNumber() (page 30)
method is provided to return the Julian date (see
http://en.wikipedia.org/wiki/Julian_day). The integer part of the floating point
number returned represents the day number, while the fractional part encodes the
time within the day. Normal arithmetic may be applied to the number. The
julianDate() (page 30) method is used to convert a Julian date to a Date (page
33) object. For example, the following code could be used to find the date three
days back from today:
$now = KE::Statistics::Date->new();
$then = KE::Statistics::Date->julianDate($new->julianNumber() -
3);

Subtracting two Julian dates will result in the number of days, hours, minutes and
seconds between them:
$diff = $now - $then;

When using dates with TexQL query statements, always specify the date in ODBC
format (yyyy-mm-dd). The dateText() (page 30) method provides the value in
the correct format. Similarly, time values should be specified using a 24 hour
clock (HH:MM:SS). The timeText() (page 30) method provides the value
formatted correctly.

http://en.wikipedia.org/wiki/Julian_day

Appendix A - KE::Statistics perl module Description

30 Statistics

Methods

new($year, $month, $day, $hour, $minutes, $seconds)
 $date = KE::Statistics::Date->new();

$date = KE::Statistics::Date->new(2009, 02, 11);
$date = KE::Statistics::Date->new(2009, 02, 11, 16, 55, 02);

The new() (page 25) method creates a new instance of a Date (page 33) object. Up
to six arguments may be provided to initialise the Date object with a given date
and/or time. If any arguments are missing, the component for the current date/time is
used. Thus, calling new() without any arguments provides a Date object with the
current date and time.

clone()
 $newdate = $date->clone();

The clone() method creates a copy of a Date object initialised with the same
date/time as the calling Date object.

yesterday()
 $yesterday = $date->yesterday();

Returns a new Date object initialised with yesterday's date. The value is 24 hours
before the calling Date object; that is, the time component is not changed.

lastHour()
 $newdate = $date->lastHour();

Returns a new Date object initialised with the date/time one hour before the date/time
of the calling Date object.

lastSecond()
 $newdate = $date->lastSecond();

Returns a new Date object initialised with the date/time one second before the
date/time of the calling Date object.

lastWeek()
 $newdate = $date->lastWeek();

Returns a new Date object initialised with the date/time one week before the date/time
of the calling Date object.

lastMonth()
 $newdate = $date->lastMonth();

Returns a new Date object initialised with the date/time one month before the
date/time of the calling Date object. If the resulting date is past the end of the month,
the last day of the month is used.

set($year, $month, $day, $hour, $minute, $second)
 $date->set(2010, 12, 14); $date->set(undef, undef, undef, 0, 0, 0);

The set() method allows any component of a Date object to be assigned a value. If
undef is provided for a component, the component's current value is maintained. If a
component is missing, a value of undef is assumed.

Description Appendix A - KE::Statistics perl module

Statistics 31

compare($date)
 if ($date1->compare($date2) == 0)

The compare() method compares two Date objects for equality. The return value can
be used to determine the equality of the objects:
-1 - date argument is lower than date object
0 - date argument is same as Date object
+1 - date argument is greater than Date object

compareDate($date)
 if ($date1->compareDate($date2) == 0)

The compareDate() method compares two Date objects for equality at the date level.
The time component is ignored. The return value can be used to determine the
equality of the object's dates:
-1 - date argument is lower than date object
0 - date argument is same as date object
+1 - date argument is greater than Date object

compareTime($date)
 if ($date1->compareTime($date2) == 0)

The compareTime() method compares two Date objects for equality at the time level.
The date component is ignored. The return value can be used to determine the equality
of the object's times:
-1 - date argument is lower than date object
0 - date argument is same as date object
+1 - date argument is greater than date object

dateText()
 $texql = "select all from eaudit where AudDate = DATE" .

 $session->quote() . $date->dateText() . $session->quote();

The dateText() method returns a text representation of the object's date in ODBC
format (yyyy-mm-dd). The value is suitable for DATE values in TexQL queries
regardless of the date format used on the server.

timeText()

 $texql = "select all from eaudit where AudTime = TIME" .
 $session->quote() . $date->timeText() . $session->quote();

The timeText() method returns a text representation of the object's time in ODBC
format (HH:MM:SS). The value is suitable for TIME values in TexQL queries
regardless of the time format used on the server.

julianNumber($date)

 $julian = $date->julianNumber();

The return value of julianNumber() is a floating point number representing the day
number in the integer part and the time (in 1/86400th of a second) in the fractional
part. Note that the Julian number for a day represents midday for the given day. Any
time before midday will have an integer value one less than any time after midday. To

Appendix A - KE::Statistics perl module Description

32 Statistics

get the Julian number for any time within a day it is necessary to add 0.5 before
calling int(). Thus:
$daynumber = int($date->julianNumber() + 0.5);

returns the Julian day number. See http://en.wikipedia.org/wiki/Julian_day for details.
julianDate($number)

 $date = KE::Statistics::Date->julianDate($number);

A Date object is returned containing the date and time expressed by the Julian date
number passed as an argument. The julianDate() method provides a mechanism for
getting a Date object after some date numeric arithmetic has been performed.

weekDay()
 $day = ("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat")[$date-

>weekDay()];

Returns the numeric day of the week for the given Date object, where 0 = Sunday, 6
= Saturday.

http://en.wikipedia.org/wiki/Julian_day

Description Appendix A - KE::Statistics perl module

Statistics 33

KE::Statistics::Statistics
The KE::Statistics::Statistics object is designed to provide easy insertions
into the estatistics table. A Statistics object allows the columns within a record
to be set and the record written. A check is made to see if the record already exists
in the table and if so an update is performed rather than an insertion. This allows
periodic tasks to be re-run to refresh data without duplicate records being created.

An estatistics record consists of four main components:

Keys A hierarchy of up to ten Keys may be specified. The Keys are used to
define the variables used to arrive at the statistical value. The first Key
should contain a title defining what the statistical value is. For example:
Key1: Audit Statistics by Operation by Module by User
(daily)
Key2: delete
Key3: elocations
Key4: bill

allows you to determine from Key1 what information is being stored.
The next three Keys are the variables (Operation, Module, User)
available. The above convention should be used so users can easily
locate records within the estatistics table.

Date Three date fields exist in estatistics: DateExact, DateFrom and DateTo.
The DateExact field is filled if the statistical value represents a period of
a day or less (that is daily or hourly), otherwise it is left empty. The
DateFrom and DateTo fields should always be filled with the
commencement and completion dates respectively.

Time Three time fields exist in estatistics: TimeExact, TimeFrom and TimeTo.
The TimeExact field is filled if the statistical value represents a single
point of time in a day, otherwise it is left empty. If the period is a range
of time in a day, the TimeFrom and TimeTo fields should be filled with
the commencement and completion times respectively.

Value The Value is the statistical datum associated with the set of defined Keys
for the given date and/or time. For example, a Value of 10 with the
above Keys would indicate user bill has deleted 10 location records
for the specified date/time period.

When completing an estastitics record, the appropriate fields should be filled
based on the period the value covers.

Appendix A - KE::Statistics perl module Description

34 Statistics

Methods

new($session)
 $stats = KE::Statistics::Statistics->new($session);

A new instance of a Statistics object tied to the supplied Session ($session (page
23)) is created. You should not create instances of a Statistics object directly,
rather $session->statistics() (page 25) should be used as this ties the created
object to the session.

setDate($date)
 $stats->setDate($date);

Sets the DateExact column in estatistics to the value of the Date object supplied. The
DateExact column should be filled if the statistic record is for a particular day (that is,
daily) or a time range within a day (that is, hourly).

setDateFrom($date)
 $stats->setDateFrom($date);

Sets the DateFrom column in estatistics to the value of the Date object supplied. The
DateFrom column should always be filled. It contains the starting date for the statistics
period.

setDateTo($date)
 $stats->setDateTo($date);

Sets the DateTo column in estatistics to the value of the Date object supplied. The
DateTo column should always be filled. It contains the finishing date for the statistics
period.

setTime($date)
 $stats->setTime($date);

Sets the TimeExact column in estatistics to the value of the Date object supplied. The
TimeExact column should only be filled if the statistic record is for a single point in
time, otherwise the column should be left empty.

setTimeFrom($date)
 $stats->setTimeFrom($date);

Sets the TimeFrom column in estatistics to the value of the Date object supplied. The
TimeFrom column contains the starting time for the statistics period. It should only be
filled for statistic records for a single point in time, or a time range (that is hourly).

setTimeTo($date)
 $stats->setTimeTo($date);

Sets the TimeTo column in estatistics to the value of the Date object supplied. The
TimeTo column contains the completion time for the statistics period. It should only be
filled for statistic records for a single point in time, or a time range (that is hourly).

setKey1($value)
 $stats->setKey1($value);

Sets the Key1 column in estatistics to the value supplied.

Description Appendix A - KE::Statistics perl module

Statistics 35

setKey2($value)
 $stats->setKey2($value);

Sets the Key2 column in estatistics to the value supplied.
setKey3($value)

 $stats->setKey3($value);

Sets the Key3 column in estatistics to the value supplied.
setKey4($value)

 $stats->setKey4($value);

Sets the Key4 column in estatistics to the value supplied.
setKey5($value)

 $stats->setKey5($value);

Sets the Key5 column in estatistics to the value supplied.
setKey6($value)

 $stats->setKey6($value);

Sets the Key6 column in estatistics to the value supplied.
setKey7($value)

 $stats->setKey7($value);

Sets the Key7 column in estatistics to the value supplied.
setKey8($value)

 $stats->setKey8($value);

Sets the Key8 column in estatistics to the value supplied.
setKey9($value)

 $stats->setKey9($value);

Sets the Key9 column in estatistics to the value supplied.
setKey10($value)

 $stats->setKey10($value);

Sets the Key10 column in estatistics to the value supplied.
setValue($value)

 $stats->setValue($value);

Sets the Value column in estatistics to the value supplied. The statistical value is a
floating point number.

write()
 The write() method saves the data in the Statistics object to the estatistics table.

If a record already exists with the same Keys, dates and times, the value is updated,
otherwise a new record is created.

Appendix A - KE::Statistics perl module Bugs

36 Statistics

Bugs
Encoding dates as a Julian number with the time as the fractional component can
lead to issues when subtracting dates, as the result represents the number of days,
hours, minutes and seconds between the two dates. If you need to find the number
of days between two dates, it is necessary to clear the time component before
applying the subtraction:
$date1->set(undef, undef, undef, 0, 0, 0);
$date2->set(undef, undef, undef, 0, 0, 0);
$days = abs($date2->julianNumber() - $date1->julianNumber());

While this not a bug, it is something to keep in mind when manipulating Julian
date numbers.

See Also Appendix A - KE::Statistics perl module

Statistics 37

See Also
For a complete description of how Julian date numbers are generated and used see:
http://en.wikipedia.org/wiki/Julian_day

http://en.wikipedia.org/wiki/Julian_day

	Overview
	Statistics Module
	Reporting

	Periodic Tasks
	emuperiodic
	Tasks
	Creating a new period
	Regenerate missing data

	Name
	Synopsis
	Description
	KE::Statistics::Session
	Methods

	KE::Statistics::ResultSet
	Methods

	KE::Statistics::Date
	Methods

	KE::Statistics::Statistics
	Methods

	Bugs
	See Also

