
  
 

 

 

  

EMu Documentation 

Release Notes: EMu 5.0 
Document Version 1 

EMu Version 5.0 

 





 3

Contents 

Here you will find collected together the Release Notes for EMu 5.0, alongside all documents 
referenced in the notes. These release notes and documents are also available on the EMu 
website. 
 
This PDF document brings together a number of individually published documents: please 
note that page numbering below refers to this combined PDF document and not to the page 
numbers printed at the bottom of pages, as each individual document has its own internal 
numbering: 
 

Release Notes: EMu 5.0 5 

Thesaurus Browse View 15 

Reporting Formats 31 

Unicode Support 77 

 
 





 

5 
 

Release Notes: EMu 5.0 
Release Date: 16 November 2015 

Requirements 

 Windows 2003, Vista, Windows 7, Windows 8, Windows 8.1, Windows 10 
 Texpress 9.0.001 or later 
 TexAPI 6.0.012 or later 
 Perl 5.8.8 or later 

New Features 
 
Thesaurus 
Browse View 

 The Thesaurus module Browse View option has been updated with many new 
functionality and usability improvements, including: 

 Seamless interaction with other EMu modes (Search, Display and 
Edit) and views (List, Contact Sheet, Page and Details). Records 
selected in the Browse View are displayed in the main EMu window 
according to the current view. 

 All of the hierarchies of the current record in EMu can be displayed in 
the Browse View, either automatically or at the click of a button. 

 Additional options for navigating between and showing or hiding 
terms in the Browse View have been added. 

 The new Hierarchy View tab displays all of the hierarchies for the 
displayed records term. 

A complete description can be found in the Thesaurus Browse View and 
Hierarchy View tab documentation. 

Reporting 
Formats 

 New report formats have been added to improve report generation and loading 
performance. It is now possible to report directly to an Open Database 
Connectivity (ODBC) data source or to an ActiveX Data Objects (ADO) 
Recordset object. The new report types are: 



 

6 
 

 Crystal - reports directly in ODBC format, removing the need for an 
ODBC filtering process. 

 Crystal ADO - reports in ADO Recordsets for Crystal which are 
accessible via Crystal's ADO connector. 

 Microsoft ADO - reports in ADO Recordsets for Microsoft products. 

Existing Crystal Report and Microsoft (Excel, Power Point and Word) report 
types that currently connect to an ODBC data source can be changed to use an 
ADO Recordset. 

Unicode 
Support 

 Full support for Unicode has been added, including: 

 Support for the Unicode 8.0 character set. 
 Data stored using UTF-8 encoding. 
 Character folding for all Unicode characters. 
 Use of the Default Unicode Collation Element Table (DUCET) for 

collation (default Unicode sorting order). 
 Punctuation is indexed and searchable. 
 Punctuation characters with special meaning (!~@$^&*()=") must 

now be escaped with a leading backslash. 
 Auto-phrasing where indexed terms are not separated by spaces are 

searched as a phrase. 

A complete description can be found in the Unicode documentation. 



 

7 
 

Improvements 
 

Performance 
Improvements 

 Performance improvements have been made to sorting, exact matching, reporting 
and attachment searches in EMu. Some examples of the observed performances 
improvements are: 

 Sorting improvements:  

Module Records Old Time New Time Factor Improvement

Catalogue 270,000 2:15 0:45 x3 

Parties 25,000 1:20 0:02 x40 

Events 22,000 2:15 0.015 x90 

 The performance improvement increases with the size of the module. The 
modules are listed from small to large. 

 Exact matching improvements:  

Module Records Old Time New Time Factor Improvement

Catalogue 250,000 1:30 0.15 x6 

Thesaurus 115,000 6:45 0:15 x27 

Events 22,000 2:20 0.01 x80 

 The performance improvement increases with the size of the module. The 
modules are listed from small to large. 

 Reporting improvements:  

Module Records Old Time New Time Factor Improvement

Bibliography 6,500 1:00 0.10 x6 

Parties 70,000 10:00 1:00 x10 

 The performance improvement increases with the size of the module. The 
modules are listed from small to large. 

 Attachment searching improvements:  

Module Records Old Time New Time Factor Improvement

Sites 10,000 10:00 1:50 x6 

Parties 200,000 60:00 9:30 x11 
 

Mandatory 
field 
consistency 
improvements 

 The consistency of the behaviour of grid and edit fields associated with columns 
that have been set as mandatory using the Mandatory Registry entry has been 
improved. The behaviour has been modified so that when a user tries to leave an 
empty edit or grid field that uses a mandatory column, the user will first be 
presented with the mandatory pop-up message. If the user tries to leave the field 
again, the mandatory pop-up message will not be presented until they re-enter and 
leave the empty field again or the record is saved. Prior to these changes 



 

8 
 

mandatory settings that applied to edit fields were only triggered when the record 
was saved. 

Additionally, changes have been made so the Lookup List buttons of grid controls 
that are associated with mandatory columns can be used without triggering the 
mandatory pop-up message. 

Events module 
Move Objects 
command 

 A command has been added to the Tools drop down menu of the Events module 
that uses the Exhibit Objects extensions. The command allows objects selected in 
the Objects grid on the Objects tab to be moved to another Event record. 
Associated Exhibit Object records are also moved: 

 

To use the command you select a series of rows in the Objects grid corresponding 
to the objects to be moved. Once they are selected the Tools>Move>Objects to 
another Event record command can be invoked. A new instance of the Events 
module is displayed allowing the user to locate the record to which the objects 

should be moved. The button is clicked to make the selection. Once the Event 
record is selected the user is asked to confirm the movement of objects to the 
selected Event record. Once confirmed the objects are moved one at a time. When 
the operation is complete, the number of objects moved is displayed. 

Styling of 
HTML controls 

 A new Column CSS Registry entry has been added, making it possible to specify 
the default font family and font size for EMu client controls that display HTML 
formatted text. An example of an HTML control is the control associated with the 
NarNarratives column on the Narrative tab of the Narratives module. 

A complete description can be found in the EMu Help documentation for the 
Column CSS Registry entry. 

 



 

9 
 

Issues Resolved 

 Fixed an issue when using the Import Tool where a new line character in appended 
data assigns the data to the incorrect row of the specified column. 

 Fixed an issue when using the Internal tab of the Movements module to update the 
Location of an attached object; the irn of the new Location would be put in the 
Movement Notes of the Catalogue instead of the Movements Notes of the Movements 
module. 

 Corrected the display of the full name of the Source in Accession Lots module 
Summary Data. 

 Changed the behaviour when adding image types that support multiple images in a 
single file (specifically the TIFF, TIFF/EP and DNG file formats) to the Multimedia 
module. Previously the "last" image from the file was selected as the Multimedia 
module master image;  now the "first" image is used. 

 Fixed an issue where a mini-multimedia component linked to a grid did not update 
when the grid row was changed. 

 Fixed an issue where dates before 30 December 1899 entered in a control via the pop-
up calendar were off by one day. 

 Fixed an issue where the value of the active cell of a grid control was retained when 
moving between records. 

 Fixed an issue where controls would appear outside of the tab boundaries when the 
View>Thumbnail menu option was specified. 

 Fixed an issue where updating Holder records in the Locations module did not trigger 
updates to the associated fields of Catalogue records using that location. 

 Fixed an issue where the Operations module could not be accessed with the error 
"You are not a registered user of "eoperations" table." 

 Fixed an issue where Lookup List buttons were not correctly enabled or disabled 
when a record was set to read-only using Record Level Security. 

 Fixed an issue where IMu server log files would overlap when the IMu server 
configuration setting process-count was greater than one. 

 Corrected the placement of the French translation for the "Time Moved" caption in 
the Tools>Relocate dialogue. 

 Fixed an issue where aborting an operation (e.g. reporting) would cause the display of 
a different record than the record that was displayed prior to the operation. 

 Fixed the display of Unicode characters in Admin Task controls. 
 Fixed an issue where the Lookup List values displayed might not be correct for 

Lookup hierarchies where the hierarchy included grid and edit controls and those 
controls were linked to another grid control. 

 Fixed an issue where merging records via the Additional Search>Merge menu 
option would produce the error "TexAPI Error: (Number 0)". 

 Fixed an issue where generating resolutions of a TIFF file and a 
Multimedia|Metadata|Embed Registry entry specified that some or all of the tags 
should be embedded in the generated resolution resulted in an "Access Violation" 
error. 

 Fixed an issue where the emuoperations utility did not correctly handle date orders 
other than "dmy" (day, month, year). 

 Fixed an issue where Lookup List hierarchy values associated with a grid were not 
automatically back-filled if the Lookup button was used and the cursor was not in the 
grid. 



 

10 
 

 Fixed an issue while running multiple simultaneous multimedia imports in multiple 
instances of the EMu client where the system-generated multimedia resolutions could 
be assigned to the wrong multimedia record. 

 Fixed an issue where data might not have been saved when adding a Lookup value to 
an edit field that is part of a Lookup hierarchy with a grid field and both fields are 
linked to another grid field. 

 Fixed an issue where data might not be saved to the correct row when the user 
invokes undo (e.g. via the Edit>Undo menu option) when the cursor is within a grid 
that is linked to another grid. 

 Added a missing entry to the crontab configuration file used for new EMu 
installations. 

 Fixed an issue where Lookup Lists did not sort according to the user-defined Sort 
Order in the Lookup Lists module. 

 Fixed an issue where the incorrect start and end dates values were set when a user-
initiated export was run via the Tools>Exports... menu dialogue. 



 

11 
 

Upgrade Notes 

The upgrade from EMu Version 4.3 to EMu 5.0 involves a number of steps. Please follow the 
instructions below carefully. 

Do not skip any steps under any circumstances. 

Before proceeding with the update please ensure that a complete backup of the EMu server 
exists and is restorable. 

There are four components that require upgrading: 

 Texpress (the database engine) 
 TexAPI (web services) 
 EMu Server (the application) 
 EMu Client (the client) 

The notes below detail how to upgrade all systems. Check the Releases table for Client 
specific notes. 

In the notes below, clientname refers to the name of the client directory for the current 
installation. The term ~emu is used to refer to user emu's home directory. This is normally 
/home/emu. 

Stopping	EMu	services	

1. Log in as emu 
2. Enter client clientname 
3. Enter ls -l loads/*/data* local/loads/*/data* 
4. Check that each data file is empty and that no data.t files exist. 

If data.t files do exist, please wait for the loads to drain before proceeding. 
5. Enter emuload stop 
6. Enter emuweb stop 
7. Enter texlicstatus 

Make sure no one is using the system. 
The upgrade will not complete successfully if users are accessing data. 

Record Session 

Each step in the upgrade process produces detailed output. In most cases this output will 
exceed the size of the screen. It is strongly recommended that the output of the upgrade 
session is recorded, so if errors occur, the output can be examined. 

1. Enter script /tmp/output-5-0 

A new shell will start and all output recorded until the shell is terminated. 



 

12 
 

Installing	Texpress	

Installing Texpress 9.0 is only required for the first client upgraded to EMu 5.0. Once 
Texpress 9.0 has been installed, this section may be skipped for subsequent upgrades. 

1. Enter cd ~emu 
2. Enter mkdir -p texpress/9.0.xxx/install (where xxx is the patch level number). 
3. Enter cd texpress/9.0.xxx/install 
4. Obtain the appropriate Texpress version for your Unix machine. 

Save the release in ~emu/texpress/9.0.xxx/install, calling it texpress.sh. 
5. Enter sh texpress.sh 

The Texpress release will be extracted. 
6. Enter . ./.profile 
7. Enter bin/texinstall ~emu/texpress/9.0.xxx 

The Texpress installation script will commence. 
8. Enter cd ~emu/texpress/9.0.xxx 
9. Enter . ./.profile 
10. Enter bin/texlicinfo 

Obtain your Texpress licence code and place it in a file called .licence. 
11. Enter bin/texlicset < .licence to install the licence. 
12. Enter \rm -fr install 
13. Enter cd ~emu/texpress 
14. Enter ln -s 9.0.xxx 9.0 

Upgrading	TexAPI	

Installing TexAPI is only required for the first client upgraded to EMu 5.0. Once TexAPI has 
been installed, this section may be skipped for subsequent upgrades. 

1. Enter cd ~emu/texpress 
2. Enter mkdir 6.0.xxx (where xxx is the patch level number). 
3. Obtain the appropriate TexAPI version for your Unix machine. 

Save the release in ~emu/texpress, calling it texapi.sh. 
4. Enter sh texapi.sh -i ~emu/texpress/6.0.xxx (expand the ~emu). 
5. Enter \rm -f texapi 
6. Enter ln -s 6.0.xxx texapi 
7. Enter \rm -f texapi.sh 

Upgrading	EMu	Server	

1. Enter cd ~emu/clientname 
2. Enter mkdir install 
3. Enter cd install 
4. Obtain the appropriate EMu server version bundle. 

Save the release bundle file in ~emu/clientname/install calling it emu.sh. 
5. Enter sh emu.sh 

The EMu release will be extracted. 
6. Enter . ./.profile 



 

13 
 

7. Enter bin/emuinstall clientname 
The EMu installation script will commence. 

8. Enter cd ~emu/clientname 
9. Enter cp .profile.parent ../.profile 
10. Enter . ../.profile 
11. Enter client clientname 
12. Each table will now be upgraded to Texpress 9.0. The upgrade program must be run 

on each table sequentially. 
1. Enter texupgrade table 

where table is the name of the Texpress table to be updated. 
2. The upgrade program will apply the following changes:  

 Backup the data file(s) in the database directory (named 
data.90upd.gz, etc.). 

 Upgrade the data file from ISO-8859-1 to UTF-8, printing the changes 
as they occur. A copy of the output is saved in data.90upg.log in the 
database directory. 

 Lengthen any fields that need to grow to contain the UTF-8 data. A 
copy of the output is saved in ins.90upg.log in the database 
directory. 

 Reindex the table. 
3. If a field cannot be lengthened automatically, a listing of the field name, its old 

length and the required length can be found in the file ins.90upg in the 
database directory. 
IMPORTANT: if a field cannot be lengthened, it must be extended manually 
by running texdesign table and altering the length of the field to the 
required value. 

4. All tables that have fields extended must have their Insertion Forms sent back 
to Axiell so they can be checked into the master tree. If this step is not 
performed, data in fields that were lengthened locally will be truncated when 
EMu is next upgraded, resulting in data loss! 

13. Enter emureindex 
14. Enter emulutsrebuild -f -t 
15. Removal of the temporary directory (and its contents) is recommended: 

Enter \rm -fr install 
16. The client will now be upgraded to EMu 5.0. If you are upgrading from a version 

prior to EMu 5.0, you must run the upgrade scripts for all versions after the old 
version before running the EMu 5.0 upgrade. 

17. Enter upgrade-5-0 
18. Enter upgrade-5-0.luts 

Starting	EMu	services	

1. Enter emuload start 
2. Enter emuload status 

Check that all loads started successfully. Investigate any loads that failed to start. 



 

14 
 

Record	Session	

The recording of the upgrade session may now be terminated. 

1. Enter exit 

The session output is available in /tmp/output-5-0. 

Upgrading	EMu	Client	

EMu 5.0 does not require the new Windows client to be installed on every machine for 
network installations. Updating the network server is sufficient. For standalone installations a 
new client is required on each machine. To upgrade the EMu Client follow the Installing 
EMu Client notes. 

Cleanup	

The EMu Server upgrade produces a number of files as part of its output. These files are 
located in each database directory. The files are: 

  data.90upg.gz   

A backup of the data file(s) taken before the upgrade process 
commences. If there is more than one data partition, subsequent files 
will be named data#001.90upg.gz, etc. The backup files may be 
sizeable even though they are compressed. 

  data.90upg.log   

A copy of the output generated as the data file(s) update to UTF-8. The 
log lists all non-ASCII characters encountered and whether they were 
upgraded or were already in UTF-8 format. The file is typically small in 
size. 

  ins.90upg   

If the file exists, then it lists all fields that could not be lengthened as 
part of the upgrade process. The file lists the field name, its current 
length and the required length. If the upgrade was successful, the file 
will not exist. 

  ins.90upg.log   
A copy of the output generated as the database fields are lengthened. 
The log lists all fields requiring resizing and whether the resize was 
successful. 

Once the upgrade is finished and testing is complete the above files may be removed. 



 

 

 
 

 

 

  

EMu Documentation 

Thesaurus Browse View  
& Hierarchy View tab 

Document Version 1 

EMu 5.0 
 

 

 

 





 

 

Contents 

S E C T I O N  1  Browse	View	 1 

The primary selection 3 
Browse View right-click menu options 4 
View menu options 8 

S E C T I O N  2  Hierarchy	View	tab	 9 

Hierarchy View right-click menu options 10 

Index	 13 
  





Browse View 
 

 

Thesaurus Browse View & Hierarchy 
View tab 

 
1

 

Browse	View	
Browse	View	mode	in	the	EMu	Thesaurus	module	provides	a	hierarchical	view	of	all	
loaded	thesauri.	It	interacts	seamlessly	with	other	modes	(Search,	Display	and	Edit),	
views	(List,	Contact	Sheet,	Page	and	Details),	and	with	the	Hierarchy	View	tab	(page	
9).	

Browse	View	mode	is	enabled	by	selecting	View>Browse	View	from	the	Thesaurus	
module	Menu	bar.	When	 the	 system	 is	 set	 to	display	 a	 left‐to‐right	 language,	 the	
Browse	View	panel	displays	to	the	left	of	the	main	Thesaurus	module	window	(as	
below);	 in	 a	 system	 displaying	 a	 right‐to‐left	 language	 (e.g.	 Arabic),	 the	 panel	
displays	to	the	right	of	the	main	Thesaurus	module	window.	

By	default,	the	Browse	View	will	show	the	top‐level	terms	for	all	available	thesauri	
when	Browse	View	is	enabled.	In	this	example,	four	thesauri	are	available:	

	
Users	are	able	to	navigate	the	thesaurus	hierarchy	by	selecting	the	plus	symbol	(+)	
beside	a	term	to	reveal	the	next	level	of	child	terms,	and	so	on.	Terms	without	the	
plus	symbol	do	not	have	any	child	terms.	

The	green	tick	( )	and	red	cross	( )	indicate	a	term's	validity	as	specified	by	the	
Valid	Term	options	on	 the	Term	tab.	Terms	with	a	green	 tick	have	a	Valid	Term	
value	of	Yes,	those	with	a	red	cross	have	a	Valid	Term	value	of	No.	

Selecting	a	term	in	the	Browse	View	panel	displays	its	record	in	the	main	Thesaurus	
module	window	using	the	currently	selected	display	view	(e.g.	List,	Details,	etc.).	If	
EMu	is	in	Search	mode	when	a	term	is	selected,	the	system	will	automatically	shift	
to	Display	mode.	In	this	example,	selecting	the	ions	 term	shifts	us	from	Search	to	
Display	mode	and	displays	the	ions	record	in	List	View:	

S E C T I O N 	 1 	



Browse View 
 

 

2 
 

Thesaurus Browse View & Hierarchy 
View tab

 

	
Multiple	terms	can	be	selected	using	the	Control	(^)	or	Shift	()	keys	while	clicking	
with	the	mouse.	The	Control	key	allows	multiple	individual	terms	to	be	selected	(or	
deselected)	anywhere.	The	Shift	key	allows	all	of	the	terms	between	two	terms	to	be	
selected.	

 



Browse View 
 

 

Thesaurus Browse View & Hierarchy 
View tab 

 
3

 

The	primary	selection	
It	is	possible	to	select	one	or	more	terms	in	the	Browse	View	(page	4)	and	on	the	
Hierarchy	View	tab	(page	9).	The	term	that	was	last	selected	is	called	the	primary	
selection.	You	can	identify	the	primary	selection	by	its	dotted	border.	In	this	example	
two	terms	have	been	selected	in	Browse	View,	ions	and	cations,	and	ions	is	the	
primary	selection	term:	

	
 



Browse View 
 

 

4 
 

Thesaurus Browse View & Hierarchy 
View tab

 

Browse	View	right‐click	menu	options	
Right‐click	the	Browse	View	to	display	a	menu	with	options	for	interacting	with	a	
term	and,	more	generally,	the	hierarchy.	In	this	example	the	atoms	term	has	been	
right‐clicked	to	display	the	menu:	

	

	 If	an	option	is	greyed	out,	it	is	not	currently	valid.	
It	is	not	necessary	to	click	a	specific	term	in	order	to	access	the	Browse	
View	menu	(you	can	click	anywhere	in	the	Browse	View	to	access	the	
menu);	 however	 some	 options	 are	 only	 valid	when	 right‐clicking	 a	
term.	

The	menu	options	are:	

Menu option Description 

Clear	Selections	 Clears	the	selection	of	any	and	all	selected	terms.	

Show	Primary	Selection	 Locate	 and	 display	 the	 term	 that	 is	 the	 primary	
selection.	
This	option	is	useful	if	you	have	scrolled	away	from	
the	 primary	 selection	 term	 in	 the	 Browse	 View.	
Right‐click	anywhere	in	the	Browse	View	and	select	
Show	 Primary	 Selection	 to	 locate	 the	 primary	
selection	term	in	the	Browse	View.	
In	this	example	the	primary	selection	(ions)	is	not	
displayed	 in	 the	 Browse	 View.	 Right‐click	
anywhere	 in	 the	 Browse	 View	 and	 select	 Show	



Browse View 
 

 

Thesaurus Browse View & Hierarchy 
View tab 

 
5

 

Menu option Description 

Primary	Selection:	

	
ions	 is	 located	 and	 displayed	 at	 the	 top	 of	 the	
Browse	View:	

	
Show	Next	Selection	 Move	 to	 the	 next	 selected	 term	 and	 make	 it	 the	

primary	selection.	



Browse View 
 

 

6 
 

Thesaurus Browse View & Hierarchy 
View tab

 

Menu option Description 

In	the	example	above,	ions	is	the	primary	selection.	
Right‐click	anywhere	in	the	Browse	View	and	select	
Show	 Next	 Selection	 to	 make	 molecules	 the	
primary	selection.	
If	 you	were	 to	 select	Show	Next	Selection	 again,	
the	primary	 selection	would	 loop	back	 to	 the	 first	
selected	term,	atoms	in	this	case.	

Show	Previous	Selection	 Move	to	the	previous	selected	term	and	make	it	the	
primary	selection.	
In	the	example	above,	ions	is	the	primary	selection.	
Right‐click	anywhere	in	the	Browse	View	and	select	
Show	 Previous	 Selection	 to	 make	 atoms	 the	
primary	selection	and	display	its	details	in	the	main	
module	window.	
If	 you	 were	 to	 select	 Show	 Previous	 Selection	
again,	the	primary	selection	would	loop	back	to	the	
last	selected	term,	molecules	in	this	case.	

Show	Parent	 Right‐click	 a	 child	 term	 to	 reveal	 its	 immediate	
parent	term.	The	parent	term	is	displayed	at	the	top	
of	the	Browse	View.	
When	we	select	Show	Parent	in	this	example:	

the	parent	for	nanomaterials	will	display	at	the	
top	of	the	Browse	View:	



Browse View 
 

 

Thesaurus Browse View & Hierarchy 
View tab 

 
7

 

Menu option Description 

Show	Use/Used	For	 Select	to	show	/	hide	the	display	of	Use	and	Used	For	
terms.	 Simultaneously	 toggles	 the	 display	 of	 Use	
and	Used	For	terms	on	the	Hierarchy	View	tab.	
See	Hierarchy	View	Tab	(page	9)	for	details.	

Expand	All	 Expand	 all	 terms	 that	 have	 previously	 been	
expanded.	

	 Only	 previously	 expanded	 terms	 are	
expanded	because	a	thesaurus	can	contain	
more	 terms	 than	 can	 be	 loaded	 and	
displayed	 in	 the	 Browse	 View	 in	 a	
reasonable	length	of	time.	

Expand	Below	 Expand	 the	 right‐clicked	 term	 to	 reveal	 its	
immediate	child	terms.	

Collapse	All	 Collapse	all	expanded	terms.	

Collapse	Top	 Collapse	 the	 hierarchy	 to	 the	 highest	 level	 of	 the	
term	that	is	right‐clicked.	

Collapse	Above	 Collapse	 the	 hierarchy	 to	 the	 immediate	 parent	
term	of	the	term	that	is	right‐clicked.	

Collapse	Below	 Collapse	 any	 children	 terms	 of	 the	 term	 that	 is	
right‐clicked	

	
 



Browse View 
 

 

8 
 

Thesaurus Browse View & Hierarchy 
View tab

 

View	menu	options	
The	View	menu	has	a	number	of	options	specific	to	the	Browse	View:	

	

Menu option Description 

Browse	View	 Show/hide	the	Browse	View	panel.	

Always	 Show	 Current	
Record	in	Browse	View	

While	this	option	is	enabled	(as	shown	above),	as	the	
current	record	changes	in	the	main	module	window	
(e.g.	 by	 clicking	 a	 row	 in	 List	 View,	 or	 navigating	
through	 records	 in	 Details	 View),	 the	 term	 for	 the	
current	 record	 will	 be	 located	 and	 shown	 in	 the	
Browse	View	hierarchy	and	will	become	the	primary	
selection.	
Select	again	to	turn	off	this	feature	(removing	the	tick	
from	beside	the	menu	option).	
If	 the	 term	 appears	 in	 multiple	 branches	 in	 the	
Browse	View	hierarchy,	each	instance	of	the	term	will	
be	selected.	

Show	Current	Record	 in	
Browse	View	

When	clicked,	the	term	for	the	current	record	in	the	
main	module	window	will	be	 located	and	shown	 in	
Browse	View	and	will	become	the	primary	selection.	
If	 the	 term	 appears	 in	 multiple	 branches	 in	 the	
Browse	View	hierarchy,	each	instance	of	the	term	will	
be	selected.	
This	option	is	also	available	by	right‐clicking	a	row	in	
List	View.	



Hierarchy View tab 
 

 

Thesaurus Browse View & Hierarchy 
View tab 

 
9

 

Hierarchy	View	tab	
The	Hierarchy	View	tab	displays	the	expanded	thesaurus	hierarchy	for	the	term	of	
the	current	record.	In	this	example,	we	see	the	full	hierarchy	of	the	ions	term:	

	
The	Hierarchy	View	tab	provides	a	visual	representation	of	the	hierarchy	of	a	single	
term	in	a	thesaurus.	As	such	the	Hierarchy	View	tab:	

 Does	not	display	the	current	term's	child	terms	
‐AND‐	

 Only	displays	Use	and	Used	for	terms	for	the	current	term.	

	 The	Browse	View	does	provide	these	two	features.	

As	with	the	Browse	View,	multiple	terms	can	be	selected	on	the	Hierarchy	View	tab	
using	the	Control	(^)	or	Shift	()	keys	while	clicking	with	the	mouse.	

 

S E C T I O N 	 2 	



Hierarchy View tab 
 

 

10 
 

Thesaurus Browse View & Hierarchy 
View tab

 

Hierarchy	View	right‐click	menu	
options	

Right‐click	the	Hierarchy	View	to	display	a	menu	with	options	for	interacting	with	a	
term	and,	more	generally,	the	hierarchy:	

	

	 If	an	option	is	greyed	out,	it	is	not	currently	valid.	
It	is	not	necessary	to	click	a	specific	term	in	order	to	access	the	Browse	
View	menu	(you	can	click	anywhere	in	the	Browse	View	to	access	the	
menu);	 however	 some	 options	 are	 only	 valid	when	 right‐clicking	 a	
term.	

The	menu	options	are:	

Menu option Description 

View	 Select	 View	 (or	 use	 the	 	 button)	 to	 open	
another	 instance	 of	 the	 Thesaurus	 module	 and	
display	details	of	the	selected	term(s).	

Select	All	 Selects	all	terms	on	the	Hierarchy	View	tab.	

Clear	Selections	 Clear	the	selection	of	terms	on	the	Hierarchy	View	
tab.	

Show	Primary	Selection	 Locate	 and	 display	 the	 term	 that	 is	 the	 primary	
selection	(page	3).	
This	option	is	useful	if	you	have	scrolled	away	from	
the	primary	selection	 term	on	the	Hierarchy	View	
tab.	 Right‐click	 anywhere	 in	 the	 Hierarchy	 View	
and	select	Show	Primary	Selection	 to	 locate	the	



Hierarchy View tab 
 

 

Thesaurus Browse View & Hierarchy 
View tab 

 
11

 

Menu option Description 

primary	selection	term	on	the	Hierarchy	View	tab. 

Show	Next	Selection	 Move	 to	 the	 next	 selected	 term	 and	make	 it	 the	
primary	selection.	
When	several	terms	have	been	selected	this	option	
makes	the	next	selected	term	the	primary	selection.	
In	 the	 following	 example,	 ions	 is	 the	 primary	
selection.	 Right‐click	 anywhere	 in	 the	 Hierarchy	
View	 and	 select	 Show	 Next	 Selection	 to	 make	
Components	the	primary	selection:	

	
If	you	were	to	select	Show	Next	Selection	again,	
the	primary	selection	would	 loop	back	to	the	 first	
selected	term,	materials	in	this	case.	

Show	Previous	Selection	 Move	to	the	previous	selected	term	and	make	it	the	
primary	selection.	
When	several	terms	have	been	selected	this	option	
makes	 the	 previous	 selected	 term	 the	 primary	
selection.	In	the	example	above,	ions	is	the	primary	
selection.	 Right‐click	 anywhere	 in	 the	 Hierarchy	
View	and	select	Show	Previous	Selection	to	make	
materials	the	primary	selection.	
If	 you	 were	 to	 select	 Show	 Previous	 Selection	
again,	the	primary	selection	would	loop	back	to	the	
last	selected	term,	components	in	this	case.	

Show	Parent	 Right‐click	 a	 child	 term	 to	 reveal	 its	 immediate	
parent	 term.	The	parent	 term	 is	 displayed	 at	 the	
top	of	the	Hierarchy	View.	

Show	Use/Used	For	 Select	to	show	/	hide	the	display	of	Use	and	Used	
For	 terms.	 Simultaneously	 toggles	 the	 display	 of	
Use	and	Used	For	terms	on	the	Browse	View	panel.

Expand	All	 Expand	all	terms.	



Hierarchy View tab 
 

 

12 
 

Thesaurus Browse View & Hierarchy 
View tab

 

Menu option Description 

Expand	Below	 Expand	the	right‐clicked	term	to	reveal	immediate	
child	terms.	

Collapse	All	 Collapse	all	expanded	terms.	

Collapse	Top	 Collapse	the	hierarchy	to	the	top‐level	of	the	term	
that	is	right‐clicked.	

Collapse	Above	 Collapse	the	hierarchy	to	the	immediate	parent	of	
the	term	that	is	right‐clicked.	

Collapse	Below	 Collapse	 any	 children	 terms	 of	 the	 term	 that	 is	
right‐clicked	

	
 



 

 

Index	

B 
Browse View • 1 

Browse View right-click menu options • 3, 4 

H 

Hierarchy View right-click menu options • 12 

Hierarchy View tab • 1, 3, 7, 11 

T 
The primary selection • 3, 12 

V 

View menu options • 8 
 



 

 

 
 

 

 

  

EMu Release Notes 

ADO Reports 
EMu 5.0 

Document Version 1 
 

 

 

 





 

 

Contents 

S E C T I O N  1  ADO	Reports	 1 

Note 1 

S E C T I O N  2  Crystal	Reports	 3 

How to create a Crystal ADO Report 3 
How to modify a Crystal Report to use ADO instead of ODBC 10 

S E C T I O N  3  Microsoft	Excel	 21 

How to create an Excel Report using the ADO RecordSet 21 
How to create an Excel Report with nested tables using the ADO 
RecordSet 32 

S E C T I O N  4  Registry	entries	 39 

Index	 41 
  





ADO Reports 
 

 

ADO Reports 
 

1

 

ADO	Reports	
Report	generation	and	performance	have	been	improved	with	EMu	5.0	and	it	is	now	
possible	to	report	directly	to	an	Open	Database	Connectivity	(ODBC)	data	source	and	
to	 an	ActiveX	Data	Objects	 (ADO)	RecordSet	object,	 bypassing	 the	ODBC	 filtering	
process.	

The	new	report	options	are:	

 Crystal	Reports:	report	directly	in	ODBC	format,	bypassing	the	ODBC	filtering	
process.	

 Crystal	ADO:	report	using	ADO	RecordSets	for	Crystal	(which	are	accessible	via	
Crystal's	ADO	connector).	

 Microsoft	ADO:	report	using	ADO	RecordSets	for	Microsoft	products.	

	 Crystal	and	Microsoft	reports	(Excel,	Power	Point	and	Word)	which	
currently	connect	to	an	ODBC	data	source	can	be	modified	to	use	an	
ADO	RecordSet.	
It	remains	possible	to	create	reports	by	connecting	directly	to	an	ODBC	
data	source.	

 

Note	
This	document	assumes	familiarity	with	Report	creation	in	EMu.	Full	details	about	
Report	 Creation	 are	 available	 in	 the	 EMu	 Help:	 Working	 with	 EMu	
records>Reports.	

 

S E C T I O N 	 1 	





Crystal Reports 
 

 

ADO Reports 
 

3

 

Crystal	Reports	
Creating	 a	 Crystal	 Report	 using	 the	 new	 ADO	 RecordSet	 is	 similar	 to	 creating	 a	
Crystal	report	with	a	direct	ODBC	connection.	The	main	differences	are	in	selecting	
the	data	source.	This	document	describes	the	differences.	

 

How	to	create	a	Crystal	ADO	Report	
In	EMu:	

1. Search	for	or	otherwise	list	a	group	of	records	on	which	to	report.	

	 When	designing	a	Crystal	ADO	report	the	records	in	your	initial	record	
set	must	have	a	value	in	each	field	to	be	included	in	the	report.	If	not,	
the	field	name	will	not	appear	in	the	list	of	available	columns.	Once	the	
report	is	defined,	it	does	not	matter	if	a	record	does	not	have	values	in	
every	field	included	in	the	report.	

2. Click	Reports	 	 in	the	Tool	bar	to	display	the	Reports	box.	

3. Click	 	 in	the	Reports	box.	
The	Report	Properties	box	displays.	

4. Enter	a	descriptive	name	for	the	Report	in	the	top	text	field.	
5. Select	Crystal	ADO	Report	from	the	Type	drop	list:	

S E C T I O N 	 2 	



Crystal Reports 
 

 

4 
 

ADO Reports

 

	
6. On	the	Fields	tab,	add	the	fields	to	be	included	in	the	report.	

In	this	example	the	fields	selected	are:	



Crystal Reports 
 

 

ADO Reports 
 

5

 

	

Note	that	a	group	was	created	using	the	Create	Group	 	 button.	
7. Make	changes	on	the	other	tabs	as	required.	

See	the	EMu	Help	for	details	about	setting	a	sort	order,	sort	options,	and	security.	

8. Click	 .	
The	new	report	is	added	to	the	Reports	box.	

9. In	 the	 Reports	 box,	 select	 the	 new	 report	 and	 click	 	 to	 run	 the	
report	for	the	first	time.	
A	message	will	display	indicating	that	your	report	does	not	exist	on	the	server.	
This	is	to	be	expected	as	the	report	has	not	yet	been	built	in	Crystal	Reports:	

	

10. Click	 .	
An	 xml	 file	 is	 generated	 and	 saved	with	 the	 data	 from	 your	 record	 set.	 The	
location	of	this	file	can	vary,	but	typically	it	can	be	found	in:	
C:\Users\[your	
username]\AppData\Local\KESoftware\Reports\e[module	name]	



Crystal Reports 
 

 

6 
 

ADO Reports

 

For	example,	a	report	run	in	the	Parties	module,	will	save	the	xmldata	file	to:	
C:\Users\[your	
username]\AppData\Local\KESoftware\Reports\eparties	
The	Crystal	Reports	Designer	application	will	open.	

11. On	the	Start	Page	of	the	Crystal	Reports	Designer,	select	Blank	Report	under	
the	New	Reports	heading	
‐OR‐	
Select	File>New>Blank	Report	in	the	Menu	bar.	
The	Database	Expert	box	displays:	

	
12. Double‐click	Create	New	Connection	and	click	 	 beside	ADO.NET	(XML):	



Crystal Reports 
 

 

ADO Reports 
 

7

 

	
The	following	screen	will	display:	

	



Crystal Reports 
 

 

8 
 

ADO Reports

 

13. Click	the	button	beside	the	File	Path	field	to	locate	and	select	the	xmldata.xml	
file	created	when	the	report	was	first	run	(Step	9).	
See	Step	10	for	details	of	the	location	of	the	xmldata.xml	file.	

14. Click	 	 to	return	to	the	Database	Expert:	

	

Group 1	contains	values	from	fields	that	we	grouped	in	the	EMu	report	in	this	
example	(see	Step	6).	These	fields	are	tables	of	values	(they	can	hold	more	than	
one	value).	This	data	needs	to	be	added	to	our	report	using	a	sub‐report	(see	the	
EMu	Help	for	details).	
Field	values	from	the	Catalogue	are	contained	in	the	table	called	row.	

15. Select	row	and	add	it	to	the	Selected	Tables	pane:	



Crystal Reports 
 

 

ADO Reports 
 

9

 

	

16. Click	 .	
The	 Crystal	 Report	 Designer	 displays,	 ready	 for	 you	 to	 design	 your	 Crystal	
report.	See	the	EMu	Help	for	details	of	designing	a	Crystal	Report.	

	 It	 is	 important	not	 to	move	 the	xmldata.xml	 file	as	 this	will	 cause	
problems	when	sharing	the	report	with	other	users.	

 



Crystal Reports 
 

 

10 
 

ADO Reports

 

How	to	modify	a	Crystal	Report	to	use	
ADO	instead	of	ODBC	

To	modify	a	Crystal	Report	to	use	ADO	rather	than	ODBC:	

1. Open	the	Report	Properties	dialogue	for	the	report.	
This	example	uses	the	default	report	List (A4).	

2. Select	Crystal	ADO	Report	from	the	Type	drop	list:	

	
The	fields	for	this	report	are:	



Crystal Reports 
 

 

ADO Reports 
 

11

 

	
Two	tables	are	generated	in	this	report.	

3. Click	 	 and	run	the	report.	
Crystal	will	create	the	ADO	record	set	and	the	following	error	will	display:	

	
4. Open	 the	 Crystal	 report	 in	 the	 Crystal	 Report	 Designer	 and	 select	 the	

Database>Set	Datasource	Location	menu	option.	
The	Set	Datasource	Location	dialogue	will	display:	



Crystal Reports 
 

 

12 
 

ADO Reports

 

	
5. Select	Create	New	Connection	 in	 the	Replace	with	pane	and	click	 	 beside	

ADO.NET	(XML).	
The	following	screen	will	display:	



Crystal Reports 
 

 

ADO Reports 
 

13

 

	
6. Click	the	button	beside	the	File	Path	field	to	locate	and	select	the	xmldata.xml	

file	created	when	the	report	was	run.	
The	location	of	this	file	can	vary,	but	typically	it	can	be	found	in:	
C:\Users\[your	
username]\AppData\Local\KESoftware\Reports\e[module	name]	
For	example,	a	report	run	in	the	Parties	module,	will	save	the	xmldata	file	to:	
C:\Users\[your	
username]\AppData\Local\KESoftware\Reports\eparties	

7. Click	 .	
You	are	returned	to	the	Set	Datasource	Location	dialogue:	



Crystal Reports 
 

 

14 
 

ADO Reports

 

	
Next	it	is	necessary	to	map	fields	from	the	old	ODBC	data	source	to	the	new	ADO	
RecordSet.	
In	this	example	there	are	two	tables	to	map	and	one	sub‐report.	

8. To	 map	 the	 old	 ODBC	 Catalogue	 fields	 to	 the	 new	 Catalogue	 table,	 click	
ecatalogue_csv	in	the	Current	Data	Source	pane	and	then	click	the	row	table	in	
the	Replace	with	pane.	
The	Update	button	will	be	enabled.	

9. Click	the	Update	button	and	the	Map	Fields	dialogue	will	display:	



Crystal Reports 
 

 

ADO Reports 
 

15

 

	
Fields	with	the	same	name	will	be	mapped	automatically.	

10. Uncheck	the	Match	type	check	box	to	reveal	more	fields	in	the	Unmapped	Fields	
pane:	



Crystal Reports 
 

 

16 
 

ADO Reports

 

	
11. Complete	mapping	fields	in	the	Unmapped	Fields	pane.	

In	this	example	we	map	ecatalogue_key	to	ecatalogue_key	and	irn	to	irn	
by	selecting	both	fields	to	map	and	clicking	the	Map	button.	
Once	mapped,	fields	will	be	moved	to	the	Mapped	Fields	pane:	



Crystal Reports 
 

 

ADO Reports 
 

17

 

	
12. Click	 	 when	all	fields	are	mapped.	

You	are	returned	to	the	Set	Datasource	Location	dialogue.	
13. Repeat	the	mapping	process	for	all	fields	(in	this	example,	mapping	fields	in	the	

CreatorD_csv	table	to	the	ADO	table	CreatorDetails):	



Crystal Reports 
 

 

18 
 

ADO Reports

 

	
14. Once	all	fields	have	been	remapped	in	all	tables	click	Close.	

You	are	returned	to	the	Crystal	design	window.	
If	you	refresh	report	data	at	this	stage	and	you	have	a	sub‐report	object,	you	will	
probably	receive	an	error	regarding	sub‐report	links,	e.g.:	

	



Crystal Reports 
 

 

ADO Reports 
 

19

 

Click	 	 to	open	the	Record	Selection	Formula	Editor.	Change	the	link	
key	field	used	by	the	old	ODBC	table	to	the	link	key	field	referenced	by	the	ADO	
RecordSet:	

	

The	report	should	now	work	correctly.	
 





Microsoft Excel 
 

 

ADO Reports 
 

21

 

Microsoft	Excel	

	 The	 following	 examples	 demonstrate	 how	 to	 create	 a	 basic	 Excel	
report	 using	 VBA.	 Please	 note	 that	 it	 is	 not	 the	 intention	 of	 this	
document	to	teach	VBA.	
Excel	2013	was	used	to	create	these	reports.	

 

How	to	create	an	Excel	Report	using	the	
ADO	RecordSet	

With	ODBC	data	sources	there	is	an	option	in	Excel	to	open	a	connection	without	
writing	Visual	Basic	code.	This	is	not	the	case	when	making	a	connection	to	an	ADO	
record	set	and	it	is	necessary	to	write	VB	code.	

 

S E C T I O N 	 3 	



Microsoft Excel 
 

 

22 
 

ADO Reports

 

Step	1:	Create	a	new	report	in	EMu	
This	 first	 example	 is	 a	 simple	 report	 on	 single	 value	 fields	 from	 the	 Catalogue	
module.	 The	 VBA	 code	 provided	 in	 this	 example	 will	 automatically	 populate	
headings	and	row	data	for	each	column	selected.	

In	EMu:	

1. Search	for	or	otherwise	list	a	group	of	records	on	which	to	report.	

2. Click	Reports	 	 in	the	Tool	bar	to	display	the	Reports	box.	

3. Click	 	 in	the	Reports	box.	
The	Report	Properties	box	displays.	

4. Enter	a	descriptive	name	for	the	Report	in	the	top	text	field.	
5. Select	Microsoft	ADO	Report	from	the	Type	drop	list:	

	
6. On	the	Fields	tab,	add	the	fields	to	be	included	in	the	report.	

Fields	selected	in	this	example	are:	



Microsoft Excel 
 

 

ADO Reports 
 

23

 

	
7. Make	changes	on	the	other	tabs	as	required.	

See	the	EMu	Help	for	details	about	setting	a	sort	order,	sort	options,	and	security.	

8. Click	 .	
The	new	report	is	added	to	the	Reports	dialogue	box.	

9. Select	the	new	report	and	click	 	 to	run	the	report	for	the	first	time.	
A	message	will	display	indicating	that	your	report	does	not	exist	on	the	server.	
This	is	to	be	expected	as	the	report	has	not	yet	been	built	in	Excel:	

	

10. Click	 .	
An	 xml	 file	 is	 generated	 and	 saved	with	 the	 data	 from	 your	 record	 set.	 The	
location	of	this	file	can	vary,	but	typically	it	can	be	found	in:	
C:\Users\[your	
username]\AppData\Local\KESoftware\Reports\e[module	name]	
For	example,	a	report	run	in	the	Parties	module,	will	save	the	xmldata	file	to:	
C:\Users\[your	



Microsoft Excel 
 

 

24 
 

ADO Reports

 

username]\AppData\Local\KESoftware\Reports\eparties	
Microsoft	Excel	will	open	with	a	blank	worksheet	as	follows:	

	
 



Microsoft Excel 
 

 

ADO Reports 
 

25

 

Ensure	that	Excel	is	setup	correctly	

If	the	Developer	tab	does	not	display	in	the	Ribbon:	

1. Click	File>Options>Customize	Ribbon.	
2. With	Main	Tabs	selected	from	the	Customize	the	Ribbon	drop	list	(1),	select	the	

Developer	check	box	(2):	

	
In	order	to	run	the	macros	that	we	will	create	with	our	reports,	we	need	to	ensure	
that	the	Security	level	in	Excel	is	appropriate:	

1. On	the	Developer	tab,	click	 .	
2. Enable	all	macros:	



Microsoft Excel 
 

 

26 
 

ADO Reports

 

	

3. Click	 	 to	close	the	Trust	Center.	

4. On	the	Developer	tab,	click	 .	
The	following	screen	displays:	



Microsoft Excel 
 

 

ADO Reports 
 

27

 

	

5. Ensure	that	the	Microsoft	ActiveX	Data	Objects	Library	is	available:	
5.1. Select	Tools>References	in	the	Menu	bar	

In	the	References	–	VBAProject	dialogue	that	displays,	make	sure	that	the	
following	checkbox	is	checked:	

	

5.2. Click	 .	
 



Microsoft Excel 
 

 

28 
 

ADO Reports

 

Step	2:	Design	the	report	in	Excel	
1. Double‐click	Sheet1	in	the	VBAProject	pane:	

	

2. Copy	and	paste	the	following	VB	code:	
Sub OpenAdoFile()	
    Dim RecordSet As ADODB.RecordSet	
    Dim Worksheet As Excel.Worksheet	
    Dim h As Long	
    Dim col As Long	
    Dim datarow As Long	
    Dim source As String	
	
    ' Get the persisted record set	
    source = Environ("LocalAppData") & "\KESoftware\ 
Reports\ecatalogue\xmldata.xml"	
    Set RecordSet = New ADODB.RecordSet	
    RecordSet.Open source, "Provider=MSPersist"	
   	
    ' Get the active page to send the data to	
    Set Worksheet = ThisWorkbook.ActiveSheet	
    Application.Visible = True	
       	
    ' Put out all of the column headers	
    col = 1	



Microsoft Excel 
 

 

ADO Reports 
 

29

 

    ListColumnNames Worksheet, RecordSet, col	
       	
    ' Print out all the row data	
    While Not RecordSet.EOF	
        col = 1	
        datarow = datarow + 1	
        For h = 0 To RecordSet.Fields.count - 1	
                Worksheet.Cells(datarow + 1, col).Value = 
RecordSet.Fields(h).Value	
                col = col + 1	
        Next	
        RecordSet.MoveNext	
    Wend	
           	
    Worksheet.Range("A1").CurrentRegion.Select	
    Worksheet.Columns.AutoFit	
    Set RecordSet = Nothing	
End Sub	
	
Private Sub ListColumnNames(ByVal ws As Excel.Worksheet, ByVal 
rs As ADODB.RecordSet, ByRef col As Long)	
    Dim i As Long	
    ' Loop through the record set pulling out the column names	
    For i = 0 To rs.Fields.count - 1	
            ws.Cells(1, col).Value = rs.Fields(i).Name	
            col = col + 1	
    Next	
End Sub	



Microsoft Excel 
 

 

30 
 

ADO Reports

 

	

3. Double‐click	ThisWorbook	 in	 the	 VBAProject	 pane	 and	 copy	 and	 paste	 the	
following	code:	
Sub Workbook_Open()	
' Load up the ADO File	
Sheet1.OpenAdoFile	
End Sub	

	



Microsoft Excel 
 

 

ADO Reports 
 

31

 

4. Save	the	report	and	upload	it	to	your	EMu	report	(page	22)	on	the	Report	Type	
tab	of	the	Report	Properties	box.	

When	the	report	is	run	in	EMu,	an	Excel	report	is	generated:	

	
 



Microsoft Excel 
 

 

32 
 

ADO Reports

 

How	to	create	an	Excel	Report	with	
nested	tables	using	the	ADO	RecordSet	

1. Repeat	Step1:	Create	a	new	report	in	EMu	(page	22).	
For	this	example,	the	following	fields	were	selected.	Note	the	two	nested	tables	
‐	Creator's	Name	and	Physical:	

	

2. In	Excel,	click	 	 on	the	Developers	tab.	
3. Double‐click	Sheet1	in	the	VBAProject	pane:	
4. Copy	and	paste	the	following	VB	code:	



Microsoft Excel 
 

 

ADO Reports 
 

33

 

Sub Read_XML_Data()	
	
    Dim rst As ADODB.Recordset	
    Dim Worksheet As Excel.Worksheet	
    Dim i As Long	
    Dim j As Long	
    Dim source As String	
    Dim datarow As Long	
    Dim saverow As Long	
    Dim lastrow As Long	
    Dim col As Long	
   	
    ' These next declaration is a little odd. Its needed in 
cases where the entire value	
    ' of a nested table is blank. In these cases it is necessary 
to force a number of columns to be skipped when printing	
    ' out field values. Oddly, as long as a nested table has 
at least one value, then there is no issue.	
    ' There is only a need to declare one variable for each 
nested table.	
    ' In this example there are only two nested tables so two 
declarations are needed	
    ' The value assigned to each variable will depend on the 
number of fields in that nested table.	
    ' In this example the first nested table is the 
CreCreatorRef_tab, which has two fields, i.e. NamFirst and 
NamLast	
    ' and the second nested table, i.e Physical, has 3 fields, 
i.e. PhyType, PhyHeight and PhyWidth	
   	
    Dim firstnestedtable As Long	
    Dim secondnestedtable As Long	
    Dim nestedtablecount As Long	
   	
    firstnestedtable = 2	
    secondnestedtable = 3	
    nestedtablecount = 1	
                   	
    ' Get the persisted record set	
    source = Environ("LocalAppData") & 
"\KESoftware\Reports\ecatalogue\xmldata.xml"	
    Set rst = New ADODB.Recordset	
    rst.Open source, "Provider=MSPersist"	
   	
    ' Get the active page to send the data to	
    Set Worksheet = ThisWorkbook.ActiveSheet	
    Application.Visible = True	



Microsoft Excel 
 

 

34 
 

ADO Reports

 

       	
    'Add column labels	
    Worksheet.Cells(1, 1).Select	
    ActiveCell.EntireRow.Insert	
    Worksheet.Cells(1, 1).Value = "Record No"	
    Worksheet.Cells(1, 2).Value = "IRN No"	
    Worksheet.Cells(1, 3).Value = "Title"	
    Worksheet.Cells(1, 4).Value = "Date Created"	
    Worksheet.Cells(1, 5).Value = "Creator First"	
    Worksheet.Cells(1, 6).Value = "Creator Last"	
    Worksheet.Cells(1, 7).Value = "Physical Type"	
    Worksheet.Cells(1, 8).Value = "Physical Length"	
    Worksheet.Cells(1, 9).Value = "Physical Width"	
       	
    col = 1	
    ' Start printing data from Row 3	
    datarow = 3	
    lastrow = datarow	
    While Not rst.EOF	
        col = 1	
          	
        If datarow < lastrow Then	
            datarow = lastrow	
        End If	
           	
        For j = 0 To rst.Fields.Count - 1	
            If rst.Fields(j).Type = adChapter Then	
                If rst.Fields(j).Value.BOF Then	
                    Worksheet.Cells(datarow, col).Value = ""	
                    If nestedtablecount = 1 Then	
                        col = col + firstnestedtable	
                        nestedtablecount = nestedtablecount + 
1	
                    ElseIf nestedtablecount = 2 Then	
                        col = col + secondnestedtable	
                        nestedtablecount = nestedtablecount + 
1	
                    End If	
                Else	
                    If rst.Fields(j).Value.EOF Then	
                        Worksheet.Cells(datarow, col).Value = 
""	
                        If nestedtablecount = 1 Then	
                            col = col + firstnestedtable	
                            nestedtablecount = 
nestedtablecount + 1	
                        ElseIf nestedtablecount = 2 Then	



Microsoft Excel 
 

 

ADO Reports 
 

35

 

                            col = col + secondnestedtable	
                            nestedtablecount = 
nestedtablecount + 1	
                        End If	
                    Else	
                        saverow = datarow	
                        ListNestedValues Worksheet, 
rst.Fields(j).Value, col, datarow, lastrow, saverow, 
nestedtablecount	
                    End If	
                End If	
            Else	
                If IsNull(rst.Fields(j).Value) Then	
                    Worksheet.Cells(datarow, col).Value = ""	
                Else	
                    Worksheet.Cells(datarow, col).Value = 
rst.Fields(j).Value	
                End If	
                col = col + 1	
            End If	
        Next	
        rst.MoveNext	
        datarow = datarow + 1	
        nestedtablecount = 1	
    Wend	
    	
    'Closing the recordset.	
    rst.Close	
    	
    'Release object from memory.	
   	
    Worksheet.Range("A1").CurrentRegion.Select	
    Worksheet.Columns.AutoFit	
    Set rst = Nothing	
    	
End Sub	
	
Private Sub ListNestedValues(ByVal ws As Excel.Worksheet, 
ByVal rs As ADODB.Recordset, ByRef col As Long, ByRef datarow 
As Long, ByRef lastrow As Long, ByRef saverow As Long, ByRef 
nestedtablecount As Long)	
    Dim i As Long	
    Dim j As Long	
    Dim startrow As Long	
      	
    ' Loop through a nested table pulling out the row values	
    j = 0	



Microsoft Excel 
 

 

36 
 

ADO Reports

 

    startrow = saverow	
    While Not rs.EOF	
        max = 1	
        j = col	
        For i = 0 To rs.Fields.Count - 1	
            ' Don't print key values	
            If rs.Fields(i).Name <> "ecatalogue_key" And 
rs.Fields(i).Name <> "CreCreatorRef_key" And rs.Fields(i).Name 
<> "Physical_key" _	
            Then	
                If IsNull(rs.Fields(i).Value) Then	
                    ws.Cells(startrow + 1, j).Value = ""	
                    j = j + 1	
                Else	
                    If rs.Fields(i).Type = adChapter Then	
                        ListNestedValues ws, 
rs.Fields(i).Value, j, datarow, lastrow, saverow, 
nestedtablecount	
                        datarow = startrow	
                    Else	
                        ws.Cells(startrow, j).Value = 
rs.Fields(i).Value	
                        j = j + 1	
                    End If	
                End If	
            End If	
        Next	
        rs.MoveNext	
        startrow = startrow + 1	
    Wend	
   	
    If (j > 0) Then	
        col = j	
    End If	
   	
    If startrow > lastrow Then	
        lastrow = startrow	
    End If	
   	
    nestedtablecount = nestedtablecount + 1	
End Sub	

5. Double‐click	ThisWorbook	 in	 the	 VBAProject	 pane	 and	 copy	 and	 paste	 the	
following	code:	
Sub Workbook_Open()	
' Load up the ADO File	
Sheet1.Read_XML_Data	
End Sub	



Microsoft Excel 
 

 

ADO Reports 
 

37

 

6. Save	the	report	and	upload	it	to	your	EMu	report	(page	22)	on	the	Report	Type	
tab	of	the	Report	Properties	box.	

When	the	report	is	run	in	EMu,	an	Excel	report	is	generated:	

	
 





Registry entries 
 

 

ADO Reports 
 

39

 

Registry	entries	
The	Type	Registry	entry	indicates	which	export	type	to	use	for	each	report	request.	

The	format	of	this	Registry	entry	is	;	

System|Setting|Reports|Type|Crystal CSV|value	

	 value	 is	0	or	1:	

 	 0	 Generates	data	in	the	existing	format.	

 	 1	 Generates	data	in	the	new	Crystal	ODBC	format.	

 	
	 If	this	entry	is	not	present,	a	value	of	0	is	assumed.	

System|Setting|Reports|Type|Crystal ADO|value	

	 value	 is	0	or	2:	

 	 0	 Generates	data	in	the	existing	format.	

 	 2	 Generates	data	in	the	new	Crystal	ADO	record	set.	

 	
	 If	this	entry	is	not	present,	a	value	of	0	is	assumed.	

System|Setting|Reports|Type|Microsoft ADO|value	

where:	

	 value	 is	0	or	3:	

 	 0	 Generates	data	in	the	existing	format.	

 	 3	 Generates	data	in	the	new	Microsoft	ADO	format.	

 	
	 If	this	entry	is	not	present,	a	value	of	0	is	assumed.	

	
 

S E C T I O N 	 4 	





 

 

Index	

A 

ADO Reports • 1 

C 

Crystal Reports • 3 

E 
Ensure that Excel is setup correctly • 25 

H 

How to create a Crystal ADO Report • 3 

How to create an Excel Report using the ADO RecordSet 
• 21 

How to create an Excel Report with nested tables using 
the ADO RecordSet • 32 

How to modify a Crystal Report to use ADO instead of 
ODBC • 11 

M 

Microsoft Excel • 21 

N 

Note • 1 

R 

Registry entries • 39 

S 
Step 1 
Create a new report in EMu • 22, 31, 32, 36 

Step 2 
Design the report in Excel • 28 

 



 

 

 
 

 

 

  

EMu Documentation 

Unicode in EMu 5.0 
Document Version 1 

EMu 5.0 
 

 

 

 





 

 

Contents 

S E C T I O N  1  Unicode	 1 

Overview 1 
Code Points 3 
Inputting Unicode Characters 6 
Graphemes 9 
Index Terms 10 

S E C T I O N  2  Searching	 15 

Transformations 17 
Regular Expressions 18 
Anchors 19 
Proximity 20 
Conditionals 22 

S E C T I O N  3  Auto‐phrasing	 23 

S E C T I O N  4  Collation	 25 

S E C T I O N  5  Lookup	Lists	 27 

Index	 29 
  





Unicode 
 

 

Unicode in EMu 5.0 
 

1

 

Unicode	

Overview	
EMu	 5.0	 sees	 implementation	 of	 support	 for	 the	 Unicode	 8.0	
(http://www.unicode.org/versions/Unicode8.0.0/)	 standard.	 While	 earlier	
versions	of	EMu	allowed	Unicode	characters	to	be	stored	and	retrieved,	the	system	
did	 not	 interpret	 the	 characters	 entered,	 leading	 to	 very	 limited	 searching	
functionality.	In	order	to	retrieve	a	Unicode	character	it	was	necessary	to	enter	the	
search	term	in	exactly	the	same	case	(upper	or	lower)	along	with	the	same	diacritics.	
For	example,	a	search	for	the	name	Frederic	would	not	match	Fréderic	as	the	e	
acute	character	was	not	interpreted	as	an	e	character	with	a	diacritic	associated	with	
it.	

EMu	5.0	supports	case	folding	and	base	character	mapping:	

 Case	 folding	 is	 similar	 to	 converting	 a	 character	 to	 its	 lower	 case	 equivalent	
except	that	it	handles	some	special	cases.	The	purpose	of	case	folding	is	to	make	
searching	case	insensitive.	One	special	case	is	that	the	German	lower	case	sharp	
s	character	 (ß)	 is	generally	written	 in	upper	case	as	SS.	So	Großen	would	be	
converted	 to	GROSSEN	 in	upper	case.	When	searching	we	would	 like	 to	enter	
either	of	the	previous	terms	and	find	all	case	variations.	In	order	to	do	this	the	ß	
character	needs	to	be	folded	to	ss	for	searching	purposes.	

 The	base	version	of	a	character	is	its	most	basic	representation	after	all	diacritics	
and	marks	have	been	removed.	For	example	the	base	character	of	é	is	e.	 	

The	combination	of	case	folding	and	base	characters	provides	the	basic	mechanisms	
required	to	provide	flexible	searching	over	the	full	range	of	Unicode	characters.	

All	data	stored	in	EMu	5.0	is	encoded	in	UTF‐8	format.	UTF‐8	is	a	compact	way	of	
representing	 Unicode	 characters,	 particularly	 ASCII	 characters.	 The	World	Wide	
Web	 has	 adopted	 UTF‐8	 as	 the	 character	 encoding	 format	 to	 be	 used	 in	 web	
documents.	 EMu	 5.0	 enforces	 the	 use	 of	 UTF‐8	 by	 not	 allowing	 any	 invalid	 byte	
sequences	to	be	stored	in	the	system.	The	change	has	implications	for	data	imports	
as	all	data	imported	must	be	encoded	in	UTF‐8.	In	earlier	versions	of	EMu,	systems	
may	have	been	configured	to	allow	ISO‐8859‐1	(latin1)	as	the	standard	input	format.	
ISO‐8859‐1	encoding	is	no	longer	supported.	

Searching	in	EMu	5.0	has	been	extended	to	include	punctuation	characters.	It	is	now	
possible	to	search	for	punctuation	either	as	individual	characters	(?)	or	as	part	of	a	
more	 complex	 string	 (fred@global.com).	 In	 EMu	 4.3	 and	 earlier	 certain	
punctuation	characters	have	a	special	meaning	when	used	in	a	search.	For	example	
a	search	for	fre*	will	find	all	words	beginning	with	the	letters	fre.	The	introduction	
of	punctuation	searching	in	EMu	5.0	means	that	these	special	characters	need	to	be	
"escaped"	 to	 have	 their	 special	 meaning	 applied.	 Escaping	 a	 character	 involves	

S E C T I O N 	 1 	



Unicode 
 

 

2 
 

Unicode in EMu 5.0

 

preceding	 the	 character	with	 a	 backslash	 (\).	 Thus,	 an	 EMu	 4.3	 search	 for	fre*	
becomes	fre\*	in	EMu	5.0.	

In	the	following	sections	we	explore	what	changes	have	been	implemented	and	how	
they	impact	usage	of	EMu	5.0.	

 



Unicode 
 

 

Unicode in EMu 5.0 
 

3

 

Code	Points	
The	basic	unit	of	information	in	Unicode	is	known	as	a	code	point.	A	code	point	is	
simply	a	number	between	zero	and	10FFFF16	 that	represents	a	single	entity.	Code	
points	are	generally	represented	as	hexadecimal	numbers,	that	is	base	16.	An	entity	
may	be	a:	

Entity Description 

graphic	 A	 letter,	 mark,	 number,	 punctuation,	 symbol	 or	 space,	 e.g.	 the	
letter	a.	

format	 Controls	the	formatting	of	text,	e.g.	soft	hyphen	(-)	for	breaking	a	
word	over	lines.	

control	 A	control	character,	e.g.	the	tab	character	(^I).	

private‐use	 Not	defined	in	the	Unicode	8.0	standard	but	used	by	other	non‐
Unicode	scripts,	e.g.	unused	cp	1252	character,	9116.	

surrogate	 Used	to	select	supplementary	planes	in	UTF‐16.	Characters	in	the	
range	D800‐DFFF16.	

non‐character	 Permanently	 reserved	 for	 internal	use.	Characters	 in	 the	 range	
FFFE‐FFFF16	and	FDD0‐FDEF16.	

reserved	 All	unassigned	code	points,	that	is	code	points	that	are	not	one	of	
the	above.	

The	table	below	lists	some	code	points	along	with	their	representation,	 label	and	
category:	

Code	point	
(hex) 

Represent‐	
ation 

Label Category 

E9	 é	 Latin	 small	 letter	 e	 with	
acute	

graphic	 (letter	 ‐	 lower	
case)	

600	 	 Arabic	number	sign	 format	(other)	

D6A1	 횡	 Hangul	syllable	hoeng	 graphic	(letter	‐	other)	

B4	 ´	 Acute	accent	 graphic	 (symbol	 ‐	
modifier)	

F900	 豈	 Chinese,	Japanese,	
Korean	(cjk)	
compatibility	ideograph	

graphic	(letter	‐	other)	



Unicode 
 

 

4 
 

Unicode in EMu 5.0

 

A	piece	of	 text	 is	 logically	 just	 a	 sequence	of	 code	points,	where	each	 code	point	
represents	a	part	of	the	text.	For	example,	the	piece	of	text:	

豈 ↔ how?	 	

consists	of	the	following	code	points:	

Code point 
(hex) 

Represent- 
ation 

Label 

F900	 豈	 Chinese,	 Japanese,	 Korean	 (cjk)	 compatibility	
ideograph	

20	  Space	

2194	 ↔	 Left	right	arrow	

20	  Space	

68	 h	 Latin	small	letter	h	

6F	 o	 Latin	small	letter	o	

77	 w	 Latin	small	letter	w	

3F	 ?	 Question	mark	

The	code	point	sequence	defines	the	text	itself.	There	are	a	number	of	different	ways	
that	the	code	point	sequence	can	be	saved	on	a	computer.	One	method,	called	UTF‐
32,	represents	each	code	point	as	a	32	bit	(4	byte)	quantity.	Such	a	scheme	uses	a	
large	amount	of	storage	space	as	most	text	uses	the	Latin	alphabet	(ASCII),	which	
can	be	represented	in	a	single	byte.	 	

Another	encoding	is	UTF‐8.	This	allows	ASCII	characters	to	be	stored	as	a	single	byte	
(code	points	00‐7F),	with	multiple	bytes	used	for	higher	code	points.	UTF‐8	is	very	
efficient	 space	 wise	 where	 the	 text	 consists	 of	 mainly	 ASCII	 characters,	 and	 the	
World	Wide	Web	has	adopted	it	as	the	preferred	encoding	method	for	Unicode	code	
points.	EMu	5.0	also	uses	UTF‐8	as	the	encoding	method.	Below,	we	show	a	string	
encoded	in	UTF‐32	with	a	space	between	each	code	point:	

豈 ↔ how?	

0000F900 00000020 00002194 00000020 00000068 0000006F 00000077 
0000003F	

And	the	same	string	encoded	in	UTF‐8:	

EFA480 20 E28694 20 68 6F 77 3F	

As	you	can	see	the	UTF‐8	encoding	saves	considerable	space.	

Prior	to	EMu	5.0	either	UTF‐8	or	ISO‐8859‐1	could	be	configured	as	the	encoding	



Unicode 
 

 

Unicode in EMu 5.0 
 

5

 

used	 by	 EMu.	 EMu	 5.0	 drops	 support	 for	 ISO‐8859‐1	 and	 only	 supports	 UTF‐8	
encoded	characters.	The	change	means	that	moving	to	EMu	5.0	requires	all	data	to	
be	converted	from	ISO‐8859‐1	to	UTF‐8	before	the	system	may	be	used.	The	upgrade	
process	performs	this	important	function.	

	 EMu	5.0	will	not	allow	non	UTF‐8	sequences	to	be	input.	If	an	illegal	
character	 is	 encountered,	 an	 error	 message	 is	 displayed.	 The	
enforcement	of	UTF‐8	encoding	means	that	all	data	entered	into	EMu,	
either	by	direct	entry	or	by	importing,	must	be	in	UTF‐8	format.	Data	
encoded	in	ISO‐8859‐1	cannot	be	loaded.	If	you	receive	import	data	
from	a	third	party	source,	ensure	that	it	is	in	UTF‐8	format	otherwise	
errors	will	be	generated	for	all	non‐ASCII	characters.	An	ISO‐8859‐1	
encoded	data	 file	 can	be	 converted	 to	UTF‐8	using	 the	UNIX	iconv	
utility.	

 



Unicode 
 

 

6 
 

Unicode in EMu 5.0

 

Inputting	Unicode	Characters	
Now	that	we	understand	that	text	is	made	up	of	a	sequence	of	Unicode	code	points	
it	is	worth	considering	how	these	characters	can	be	entered	into	EMu.	 	

EMu	supports	two	mechanisms:	

 Escaped	code	point	
 Raw	characters	

 

Escaped	code	point	
The	escaped	code	point	mechanism	allows	an	escape	sequence	to	be	placed	in	a	text	
string	to	represent	a	Unicode	code	point.	When	the	string	is	sent	to	the	EMu	server,	
the	escape	sequence	is	converted	into	a	Unicode	code	point	encoded	in	UTF‐8.	 	

For	example,	 if	 the	text	Fr\u{E9}deric	was	 input	while	creating	or	modifying	a	
record,	 the	data	saved	would	be	Fréderic.	The	 format	of	 the	escape	sequence	 is	
\u{x}	where	x	is	the	code	point	in	hexadecimal	of	the	Unicode	character	required.	
The	escape	sequence	may	also	be	used	when	entering	search	terms:	

	
The	 escape	 sequence	 may	 also	 be	 used	 in	 texql	 statements	 whenever	 a	 string	
constant	is	required.	For	example,	the	query	statement:	

select NamFirst  
from eparties  
where NamFirst contains 'Fr\u{E9}deric' 

will	find	all	Parties	records	where	the	First	Name	is	Fréderic	(and	variations	where	
diacritics	 are	 ignored).	 The	 escape	 sequence	 format	 may	 also	 be	 used	 for	 data	
imported	into	EMu	via	the	Import	facility.	

	



Unicode 
 

 

Unicode in EMu 5.0 
 

7

 

 

Raw	characters	
The	 raw	character	method	 involves	pasting	Unicode	characters	 into	 the	 required	
EMu	field.	There	are	a	number	of	ways	of	adding	Unicode	characters	to	the	Windows	
clipboard.	One	way	is	to	use	the	Windows	Character	Map	application.	This	can	be	
found	on	a	Window	PC	by	selecting	search	on	the	Windows	Start	menu	(or	pressing	
the	Windows	Logo	key	and	the	letter	s	at	the	same	time)	and	searching	for	charmap.	

The	Windows	Character	Map	application	allows	you	to	select	a	character	and	copy	it	
to	the	clipboard.	By	selecting	Advance	view,	it	is	possible	to	search	for	a	character	
by	name.	For	example	to	find	the	oe	ligature	character	(œ),	enter	oe ligature	in	
the	Search	for:	field	and	press	Search.	A	grid	of	all	matching	characters	is	displayed:	

	
Double‐click	 the	 required	character,	 then	press	Copy	 to	place	 it	on	 the	Windows	
clipboard.	The	character	can	then	be	pasted	into	EMu.	

 



Unicode 
 

 

8 
 

Unicode in EMu 5.0

 

Alternative	methods	
Another	way	to	add	a	Unicode	character	to	the	Windows	clipboard	is	to	use	a	website	
that	allows	Unicode	characters	to	be	searched	for	and	displayed.	Two	useful	sites	
are:	

 graphemica.com	(http://graphemica.com/)	
 unicode‐table.com	(http://unicode‐table.com/)	

With	both	of	these	sites	it	is	possible	to	search	for	a	character	by	name	or	code	point	
(in	hex),	e.g.:	

	
Highlight	the	character	on	the	page	and	copy	it	to	the	clipboard.	The	character	can	
then	be	pasted	into	the	required	EMu	field.	

Both	of	these	websites	display	the	code	point	for	the	character.	In	the	picture	above,	
the	code	point	for	œ	is	hex	153.	If	you	wanted	to	use	the	escaped	code	point	method,	
the	escape	sequence	to	use	would	be:	

\u{153}	

If	you	need	to	enter	certain	Unicode	characters	on	a	regular	basis,	you	could	create	
a	WordPad	 (or	Word)	 document	 that	 contains	 the	 characters.	When	 you	 need	 a	
character,	 simply	 copy	 the	 character	 from	 the	 document	 and	 paste	 it	 into	 EMu,	
without	the	need	to	search	for	the	character.	



Unicode 
 

 

Unicode in EMu 5.0 
 

9

 

Graphemes	
It	is	important	to	understand	that	what	we	think	of	as	a	character,	that	is	a	basic	unit	
of	writing,	may	not	be	represented	by	a	single	Unicode	code	point.	Instead,	that	basic	
unit	may	be	made	up	of	multiple	Unicode	code	points.	 	

For	example,	"g"	+	acute	accent	(ǵ)	is	a	user‐perceived	character	as	we	think	of	it	as	
a	single	character,	however	it	is	represented	by	two	Unicode	code	points	(67	301).	
A	user‐perceived	character,	which	consists	of	one	or	more	code	points,	is	known	as	a	
grapheme.	The	use	of	graphemes	is	important	for:	

 collation	(sorting);	
 regular	expressions;	
 indexing;	and	
 counting	character	positions	within	text.	

EMu	5.0	uses	graphemes	as	the	basic	building	block	for	text.	Thus	a	text	string	is	
handled	as	a	sequence	of	graphemes.	

A	grapheme	consists	of	one	or	more	base	code	points	followed	by	zero	or	more	zero	
width	code	points	and	zero	or	more	non‐spacing	mark	code	points.	In	the	case	of	"g"	
+	acute	accent	(ǵ),	the	letter	g	is	the	base	code	point	(67)	and	the	acute	accent	is	a	
non‐spacing	mark	 code	 point	 (301).	 The	 table	 below	 shows	 some	multiple	 code	
point	graphemes:	

Grapheme Code points 

각	 1100	(ᄀ)	Hangul	choseong	kiyeok	(base	code	point)	

1161	(ᅡ)	Hangul	jungseong	a	(base	code	point)	

11A8	(ᄀ)	Hangul	jongseong	kiyeok	(base	code	point)	

	
64	(d)	Latin	small	letter	d	(base	code	point)	
325	(		̥	)	combining	ring	below	(non‐spacing	mark)	
301	(		́	)	combining	acute	accent	(non‐spacing	mark)	

á	 61	(a)	Latin	small	letter	a	(base	code	point)	
301	(		́	)	combining	acute	accent	(non‐spacing	mark)	

Some	 common	multiple	 code	point	 graphemes	have	been	 combined	 into	 a	 single	
code	point.	For	example,	the	last	entry	in	the	table	above,	á,	can	also	be	represented	
by	the	single	code	point	E1.	Hence	we	have	two	representations,	or	two	graphemes,	
that	represent	the	same	character	(á	is	this	case).	

 



Unicode 
 

 

10 
 

Unicode in EMu 5.0

 

Index	Terms	
An	 index	 term	 is	 the	 basic	 unit	 for	 searching.	 It	 is	 a	 sequence	 of	 one	 or	 more	
graphemes	that	can	be	found	in	a	search	but	for	which	searching	of	sub‐parts	is	not	
supported	 (except	 if	 regular	 expressions	 are	 used).	 EMu	 provides	 word	 based	
searching,	so	an	index	term	corresponds	to	a	word.	You	can	search	for	a	word,	and	
records	that	contain	that	word	will	be	matched.	In	languages	that	define	a	word	as	a	
sequence	 of	 letters	 separated	 by	 either	 spaces	 or	 punctuation,	 an	 index	 term	
corresponds	to	a	word.	In	languages	in	which	single	(or	sometimes	multiple)	letters	
make	up	a	word,	such	as	kanji,	an	index	term	corresponds	to	each	individual	letter.	
EMu	5.0	adds	support	for	searching	for	punctuation,	so	each	punctuation	character	
is	considered	to	be	an	index	term.	

Consider	the	following	text:	

香港 is Chinese for "Hong Kong" (香 = fragrant, 港 = harbour).	

The	index	terms	for	the	above	text	are:	

Index Term 

香	

港	

is	

Chinese	

for	

"	

Hong	

Kong	

"	

(	

香	

=	

fragrant	

,	

港	

=	

harbour	

)	

.	

Each	of	the	above	terms	can	be	used	in	a	search	and	the	query	will	be	able	to	use	the	



Unicode 
 

 

Unicode in EMu 5.0 
 

11

 

high	 speed	 indexes	 to	 locate	 the	 matching	 records.	 It	 is	 possible	 to	 use	 regular	
expression	characters	(e.g.	fra\*	to	find	all	words	beginning	with	fra)	to	search	for	
sub‐parts	of	words,	however	 the	high	speed	 indexes	will	not	be	used	 in	 this	case	
(unless	partial	indexing	is	enabled).	

Each	 index	term	is	 folded	and	converted	 to	 its	base	 form.	The	 folding	process,	as	
described	in	the	overview	section	(page	1),	removes	case	significance	from	the	term.	
The	conversion	to	its	base	form	involves	removing	all	"mark"	code	points	from	the	
term	and	then	converting	the	remaining	code	points	to	their	compatible	 form	(as	
defined	by	 the	Unicode	8.0	 standard).	 The	 compatible	 form	 for	 a	 code	point	 is	 a	
mapping	from	the	current	code	point	to	a	base	character	that	has	the	same	meaning.	
For	example	the	code	point	for	subscript	5	(5)	has	a	compatible	code	point	of	5.	

The	table	below	shows	some	more	examples	for	compatibility:	

Type Compatibility Examples 

Font	variants	
	

→	
→	

H	
H	

Positional	variants	 	ع
	ع
	ع
	ع

→	
→	
→	
→	

	ع
	ع
	ع
	ع

Circled	variants	 	 →	 1	

Width	variants	 ｶ	 →	 カ	

Rotated	variants	 ︷	
︸	

→	
→	

{	
}	

Superscripts	/	subscripts	 i9	
i9	

→	
→	

i9	
i9	

Unfortunately,	some	of	the	compatibility	mappings	in	the	Unicode	8.0	standard	are	
narrower	than	we	might	expect	when	searching	text.	For	example	the	oe	ligature	(œ)	
does	not	map	to	the	characters	"oe".	So	the	French	word	cœur	("heart")	does	not	
have	an	index	term	of	coeur,	but	remains	as	cœur.	When	searching	you	need	to	enter	
cœur	as	the	search	term	otherwise	cœur	will	not	be	found.	 	

In	order	to	correct	some	of	the	compatibility	mappings,	EMu	5.0	provides	a	mapping	
file	where	a	code	point	can	be	mapped	to	its	compatible	code	point(s),	hence	"œ"	can	
be	mapped	to	"oe".	The	mapping	file	is	located	in	the	Texpress	installation	directory	
in	the	etc/unicode/base.map	file.	 	



Unicode 
 

 

12 
 

Unicode in EMu 5.0

 

A	sample	file	is	(as	distributed	currently):	
# 
# The following file is used to extend the Unicode NFKD mappings 
for 
# characters not specified in the standard. The format of the file 
is 
# a sequence of numbers as hex. Each number represents a single 
code 
# point in UTF-32 format. The first code point is the code point 
to map 
# and the second and subsequent code points are what it maps to. 
# 
00C6 0041 0045          # Latin capital letter AE -> A E 
00E6 0061 0065          # Latin small letter ae -> a e 
00D0 0044               # Latin capital letter Eth -> D 
00F0 0064               # Latin small letter eth -> d 
00D8 004F               # Latin capital letter O with stroke -> O 
00F8 006F               # Latin small letter o with stroke -> o 
00DE 0054 0068          # Latin capital letter Thorn -> Th 
00FE 0074 0068          # Latin small letter thorn -> th 
0110 0044               # Latin capital letter D with stroke -> D 
0111 0064               # Latin small letter d with stroke -> d 
0126 0048               # Latin capital letter H with stroke -> H 
0127 0068               # Latin small letter h with stroke -> h 
0131 0069               # Latin small letter dotless i -> i 
0138 006B               # Latin small letter kra -> k 
0141 004C               # Latin capital letter L with stroke -> L 
0142 006C               # Latin small letter l with stroke -> l 
014A 004E               # Latin capital letter Eng -> N 
014B 006E               # Latin small letter eng -> n 
0152 004F 0045          # Latin capital ligature OE -> O E 
0153 006F 0065          # Latin small ligature oe -> o e 
0166 0054               # Latin capital letter T with stroke -> T 
0167 0074               # Latin small letter t with stroke -> t 

Compatible	mappings	may	be	added	to	the	file	as	required.	

	 If	the	file	is	modified,	a	complete	reindex	of	the	system	is	required	in	
order	for	the	new	mappings	to	be	used	to	calculate	the	index	terms.	

If	you	consider	the	French	phrase:	

Sacré-Cœur est situé à Paris.	

the	index	terms	after	folding	and	conversion	to	base	form	are:	

Index Term 

sacre	

coeur	

est	

situe	

a	

paris	

.	



Unicode 
 

 

Unicode in EMu 5.0 
 

13

 

When	a	record	is	saved	in	EMu	all	index	terms	are	folded	and	converted	to	their	base	
form	before	indexing	occurs.	Similarly,	when	a	search	is	performed,	the	query	terms	
are	folded	and	converted	to	their	base	form	before	the	search	commences.	Hence	a	
search	for	"coeur"	or	"Cœur"	or	even	"COEUR"	will	still	match	the	text	in	the	French	
phrase	above.	

 





Searching 
 

 

Unicode in EMu 5.0 
 

15

 

Searching	
Now	that	we	understand	what	an	 index	term	is	we	can	talk	about	searching.	The	
incorporation	of	Unicode	into	EMu	has	resulted	in	the	searching	mechanism	being	
extended	to	handle	all	code	points	that	have	a	base	representation.	In	essence	this	is	
all	graphic	(page	3)	code	points	except	for	marks	and	spaces,	namely:	

 letters	
 numbers	
 punctuation	
 symbols	

The	inclusion	of	punctuation	as	an	index	term	means	that	punctuation	may	now	be	
included	in	searches	and	the	high	speed	indexes	will	be	used	to	locate	matches.	 	

An	issue	arises	in	EMu	versions	prior	to	5.0	where	certain	punctuation	characters	
were	used	 to	 adjust	 the	 type	 of	 searching	performed.	 For	 example,	 in	 EMu	4.3	 a	
search	 for	 @John	 would	 find	 all	 records	 containing	 words	 that	 sound	 like	 John	
(phonetic	searching).	Similarly	a	search	for	^joh*	would	match	records	where	the	
first	word	starts	with	the	letters	joh	(case	ignored).	A	search	for	=John	would	locate	
records	containing	John	with	case	significance	(that	 is	an	upper	case	J	and	lower	
case	 ohn).	 Since	 EMu	 4.3	 and	 earlier	 removed	 punctuation	 and	 symbols	 from	
searching	(only	letters	and	numbers	were	supported)	there	was	no	ambiguity	about	
the	punctuation	associated	with	search	terms	(as	in	the	previous	examples).	As	EMu	
5.0	allows	symbols	and	punctuation	to	be	searched	for,	some	ambiguity	can	creep	in.	
For	example,	what	does	searching	for	fred@global.com	mean?	In	EMu	4.3	it	would	
have	meant	finding:	

 "fred"	
 AND	the	phonetic	of	"global"	
 AND	"com"	

However,	in	EMu	5.0	is	the	@	character	to	be	treated	as	punctuation	or	does	it	mean	
the	phonetic	of	the	word	"global"?	 	

When	 searching	 for	 a	 word	 prior	 to	 EMu	 5.0	 you	 simply	 entered	 the	 word	 and	
performed	 the	 search.	 We	 have	 taken	 the	 same	 approach	 in	 EMu	 5.0	 with	
punctuation	characters.	In	other	words,	when	you	have	punctuation	in	a	search,	only	
records	containing	the	punctuation	are	matched.	Thus,	in	the	previous	example	the	
@	character	is	treated	as	punctuation	and	so	must	appear	in	matching	records.	 	

How	then	do	we	indicate	that	the	@	character	means	we	want	the	phonetic	version	
of	the	following	word?	We	proceed	the	character	with	a	special	marker	indicating	
the	character	is	to	take	on	its	phonetic	meaning.	The	marker	character	used	is	the	
backslash	(\)	character.	The	introduction	of	a	marker	character	to	alter	the	meaning	
of	a	character	is	not	new	in	EMu.	For	example,	\n	can	be	used	in	strings	to	represent	

S E C T I O N 	 2 	



Searching 
 

 

16 
 

Unicode in EMu 5.0

 

the	newline	character;	similarly	\u{}	is	used	to	introduce	the	escape	sequence	for	a	
Unicode	code	point.	

EMu	5.0	has	a	simple	rule	to	determine	how	to	format	a	search:	

All graphic (page 3) characters, expect for spaces and marks, in a search 
are matched as the character. Where the special meaning of a character 
(e.g. @) is required, the character must be preceded by the backslash (\) 
escape character. The only exception to this rule is that the backslash 
character itself must be entered twice (\\) where the actual character is 
required. 

The	table	below	compares	some	searches	in	EMu	4.3	and	their	equivalent	in	EMu	
5.0:	

Find EMu 4.3 EMu 5.0 

Records	containing	Fred	 fred	 fred	

Records	where	Fred	is	the	only	
word	in	the	field	

^fred$	 \^fred\$	

Records	that	contain	Fred	
phonetically	

@fred	 \@fred	

Records	containing	Fred	with	
matching	case	

=Fred	 \=Fred	

Records	containing	the	phrase	
Sacré-Cœur	

"sacré cœur"	 \"sacre-coeur\"	

Records	where	blue	and	sky	are	
within	five	index	terms	of	each	
other	

(blue sky) <= 5 
words	

\(blue sky\) <= 
5 words	

In	the	following	sections	we	will	look	at	all	available	special	search	operators	and	
show	examples	of	their	use	in	EMu	5.0.	Each	of	the	operators	is	displayed	with	its	
leading	escape	character,	the	backslash	character.	

 



Searching 
 

 

Unicode in EMu 5.0 
 

17

 

Transformations	
Transformations	 are	 an	 operator	 that	 is	 applied	 to	 a	 search	 term	 to	 alter	 its	
interpretation.	The	table	below	lists	all	valid	transformations:	

Transformation Description 

\~	 Search	for	all	variations	of	a	word.	For	example,	searching	for	
\~elect	 will	 match	 elect,	 election,	 electing	 and	
elected,	but	not	electricity	(its	base	word	is	electric)	

\&	 Ignore	the	case	(upper	or	lower)	of	the	search	term.	This	is	the	
default	transformation	if	one	is	not	specified	explicitly.	

\@	 Use	phonetic	or	sounds	like	searching	for	the	specified	word.	

\=	 Perform	 the	 search	using	 case	 significance	 for	 the	 following	
word.	

\==	 Perform	 the	 search	 not	 only	 matching	 the	 case	 but	 also	
matching	any	marks	(diacritics).	

A	transformation	is	always	applied	to	a	word	and	is	placed	immediately	before	the	
word	to	which	it	applies.	Some	examples	are:	

Find  Search 

Records	containing	all	tenses	of	the	word	locate.	 	 \~locate	

Records	where	melbourne	is	all	in	lower	case.	 	 \=melbourne	

Records	 with	 Sacré	 and	 Cœur	 exactly	 as	 specified,	 that	 is	
matching	case	and	diacritics,	but	not	necessarily	next	to	each	
other.	

	 \==Sacré 
\==Cœur	

Records	containing	words	similar	to	smythe	phonetically.	 	 \@smythe	

	
 



Searching 
 

 

18 
 

Unicode in EMu 5.0

 

Regular	Expressions	
Regular	expressions	provide	a	mechanism	for	searching	for	patterns	in	a	word.	With	
regular	expressions,	sub‐parts	of	a	word	may	be	matched.	In	general	the	high	speed	
indexes	 cannot	 be	 used	with	 regular	 expression	 searches.	 The	 only	 exception	 is	
trailing	regular	expressions	(that	 is	a	regular	expression	that	has	 leading	 letters),	
where	partial	indexing	has	been	enabled.	 	

Regular	 expressions	 can	 be	 intermixed	 with	 the	 \=	 and	 \==	 transformations	 to	
enforce	case	and	diacritic	significance.	 	

The	table	below	lists	all	valid	regular	expressions:	

Regular Expression Description 

\?	 Matches	any	single	grapheme.	

\*	 Matches	zero	or	more	graphemes.	

\[range\]	 Matches	only	one	of	a	sequence	of	graphemes	specified	in	range.
range	may	 consist	 of	 individual	 graphemes	or	 a	 beginning	and	
end	grapheme	may	be	specified	separated	by	a	minus	sign	(e.g.	
a-z).	

\{range\}	 Matches	 one	 or	more	 of	 a	 sequence	 of	 graphemes	 specified	 in	
range.	
range	may	 consist	 of	 individual	 graphemes	or	 a	 beginning	and	
end	grapheme	may	be	specified	separated	by	a	minus	sign	(e.g.	
0-9).	

Some	examples	are:	

Find Search 

Records	containing	words	starting	with	abs.	 abs\*	

Records	containing	Arabic	numbers.	 \{٩-٠\}	

Records	with	a	three	grapheme	word.	 \?\?\?	

Records	with	organisation	spelt	with	either	an	s	or	z.	 organi\[sz\]ation	

Records	with	at	least	one	word	containing	a	capital	S.	 \=\*S\*	

Records	containing	either	an	upper	case	or	lower	case	é.	 \==\*\[éÉ\]\*	

	
 



Searching 
 

 

Unicode in EMu 5.0 
 

19

 

Anchors	
Anchors	are	used	to	indicate	that	a	search	term	should	be	located	as	either	the	first	
or	 last	word	in	a	piece	of	text.	Anchors	can	be	used	in	combination	with	all	other	
types	of	search	operators,	namely	transformations,	regular	expressions,	phrases	and	
proximity.	 	

The	table	below	lists	all	valid	anchors:	

Anchors Description 

\^	 The	search	term	following	must	be	the	first	word	in	the	text.	

\$	 The	search	term	following	must	be	the	last	word	in	the	text.	

Some	examples	are:	

Find  Search 

Records	that	have	text	ending	in	a	question	mark.	 	 ?\$	

Records	with	text	beginning	with	the	word	the.	 	 \^the	

Records	where	the	text	contains	only	the	word	Unknown.	 	 \^Unknown\$	

Records	with	text	where	the	first	word	starts	with	a	lower	
case	Latin	letter.	

	 \^\==\[a-z\]\*	

	
 



Searching 
 

 

20 
 

Unicode in EMu 5.0

 

Proximity	
Proximity	 searching	 provides	 a	 mechanism	 for	 finding	 a	 list	 of	 words	 within	 a	
specified	distance	(either	words,	sentences	or	paragraphs).	EMu	supports	two	types	
of	proximity	searches:	

 The	first	is	phrase	searches	where	the	words	must	appear	next	to	each	other	and	
in	 the	 order	 they	 are	 specified.	 The	 words	 in	 a	 phrase	 search	 may	 have	
transformations,	regular	expressions	and	anchors	applied.	 	

 The	 second	 is	 a	 regular	 proximity	 search.	 Proximity	 searches	 may	 include	
transformations,	regulars	expressions,	anchors	and	phrases.	

The	table	below	lists	all	valid	proximity	operators:	

Proximity Description 

\"search	terms\"	 The	 search	 terms	 enclosed	 within	 the	 phrase	
operator	(\")	must	appear	next	to	each	other	and	
in	the	order	they	are	specified.	

\(search	terms\) distance	 The	search	 terms	may	appear	 in	any	order	unless	
otherwise	 specified.	 The	 distance	 between	 the	
terms	indicates	the	range	within	which	the	search	
terms	must	appear.	The	syntax	for	distance	is:	
[ordered] relop number type	
where:	

 relop	 is	one	of	the	relational	operators	<,	
<=,	=,	>,	>=	

 number	is	the	distance	to	use	
 type	 is	 one	 of	 words,	 sentences	 or	

paragraphs	

The	 keyword	 ordered	 is	 optional,	 but	 if	 given,	
requires	 the	 search	 terms	 to	 be	 in	 the	 order	
specified.	

Some	examples	are:	

Find Search 

Records	where	the	phrase	the black cat	
occurs.	

\"the black cat\"	

Records	 containing	 only	 the	 phrase	 Not 
Applicable.	

\"\^Not Applicable\$\"	

Records	 where	 Fred	 occurs	 case	
significantly	 in	 the	 same	 sentence	 as	 the	
phonetic	 of	 Smith	 where	 Fred	 appears	
first.	

\(\=Fred \@Smith\) ordered 
= 1 sentence	



Searching 
 

 

Unicode in EMu 5.0 
 

21

 

Find Search 

Records	 where	 the	 kanji	 character	 豈	
appear	within	 5	 characters	 of	 the	 phrase	
香	 港.	

\(豈 \"香 港\"\) <= 5 words	

	
 



Searching 
 

 

22 
 

Unicode in EMu 5.0

 

Conditionals	
EMu	provides	support	for	one	conditional	operator,	NOT.	The	NOT	operator	reverses	
the	sense	of	the	next	search	term.	The	NOT	operator	can	be	applied	to	any	of	the	other	
search	 operators,	 that	 is	 transformations,	 regular	 expressions,	 anchors	 and	
proximity.	 	

The	table	below	lists	the	valid	conditional	operator:	

Conditionals Description 

\!	 The	sense	of	the	next	search	term	is	reserved.	

Some	examples	are:	

Find Search 

Records	that	do	not	contain	the	kanji	 豈. \!豈	

Records	that	contain	anything	apart	from	
the	single	word	Unknown.	

\!\^Unknown\$	

Records	 that	 do	 not	 contain	 the	 phrase	
Not Applicable.	

\!\"Not Applicable\"	

Records	 containing	 the	 phrase	 Sacré 
Cœur	with	case	and	diacritic	significance	
but	not	Paris.	

\"\==Sacré \==Cœur\" \!Paris	

	
 



Auto-phrasing 
 

 

Unicode in EMu 5.0 
 

23

 

Auto‐phrasing	
Unicode	graphemes	are	broken	down	into	one	of	three	categories	for	use	in	EMu	5.0.	
The	categories	are:	

Category Description 

combining	 A	grapheme	that	is	a	simple	letter	or	number.	It	is	not	a	word	in	its	
own	right	but	requires	other	characters	to	form	words.	 	
Examples	are	the	Latin,	Arabic	and	Hebrew	letters	and	numbers.	

single	 A	single	grapheme	is	used	to	represent	a	base	word	or	meaning.	 	
Examples	are	Kanji	and	punctuation	characters.	

break	 A	character	that	delineates	words,	typically	a	space	character.	

Consider	the	following	text:	

香港 = "Hong Kong".	

The	graphemes	along	with	categories	are:	

Grapheme Category 

香	 single	

港	 single	

	 break	
=	 single	
	 break	
"	 single	
H	 combining	

o	 combining	

n	 combining	

g	 combining	

	 break	

K	 combining	

o	 combining	

n	 combining	

g	 combining	

"	 single	

.	 single	

S E C T I O N 	 3 	



Auto-phrasing 
 

 

24 
 

Unicode in EMu 5.0

 

EMu	uses	the	category	to	determine	what	is	an	index	term.	Each	single	grapheme	is	
treated	as	a	separate	index	item,	while	combining	graphemes	are	joined	together	to	
form	a	"word"	up	to	a	break	or	single	category	grapheme.	A	break	grapheme	is	not	
an	index	term	and	is	discarded.	

In	 general,	 a	 phrase‐based	 search	 must	 be	 performed	 where	 you	 want	 to	 find	
records	where	a	list	of	index	terms	occur	sequentially.	For	example,	to	find	the	two	
kanji	characters	 香港	 (Hong	Kong)	next	to	each	other,	the	query	\"香 港\"	may	
be	 used.	 Where	 a	 grapheme	 is	 part	 of	 the	 single	 category	 (like	 the	 two	 kanji	
characters),	the	system	knows	what	the	index	term	is	and	is	able	to	treat	them	as	a	
phrase	provided	a	break	character	is	not	found.	In	fact	EMu	5.0	treats	a	combination	
of	 combining	 and	 single	 graphemes	 as	 a	 phrase	without	 the	 need	 for	 the	 phrase	
operator	 until	 a	break	 grapheme	 is	 encountered.	 This	 process	 is	 known	 as	 auto‐
phrasing.	

Auto‐phrasing	means	that	a	query	of	 香港	 is	equivalent	to	\"香	 港\"	without	the	
need	 to	 add	 the	 quotes	 or	 space.	 Another	 example	 is	 an	 email	 address	 such	 as	
fred@global.com.	 In	 this	case	 the	 index	 terms	fred,	@,	global,	.,	com	must	be	
located	 sequentially.	 Auto‐phrasing	 effectively	 allows	 you	 to	 enter	 non‐space	
separated	terms	and	EMu	will	retrieve	records	where	the	terms	are	adjacent.	If	you	
do	not	want	the	terms	to	appear	next	to	each	other,	for	example	if	you	want	to	find	
香	 (fragrant)	 港	 (harbour),	 then	 simply	 placing	 a	 space	 between	 the	 two	kanji	
characters	will	disable	auto‐phrasing.	

 



Collation 
 

 

Unicode in EMu 5.0 
 

25

 

Collation	
Collation	 is	 the	 general	 term	 for	 the	 process	 of	 determining	 the	 sorting	 order	 of	
strings	 of	 characters.	 EMu	 5.0	 uses	 the	 Default	 Unicode	 Collation	 Element	 Table	
(DUCET),	as	defined	in	the	Unicode	8.0	standard,	to	determine	how	text	should	be	
sorted.	DUCET	provides	a	locale	independent	mechanism	for	ordering	values.	

If	 you	 are	 interested	 in	 the	 ordering	used	by	DUCET,	 please	 consult	 the	Unicode	
Collation	Charts	(http://unicode.org/charts/collation/).	

 

S E C T I O N 	 4 	





Lookup Lists 
 

 

Unicode in EMu 5.0 
 

27

 

Lookup	Lists	
The	addition	of	support	for	searching	on	punctuation	in	EMu	5.0	has	flowed	through	
to	other	parts	of	 the	system.	The	most	notable	change	 is	 that	punctuation	 is	now	
significant	in	Lookup	List	values.	 	

When	comparing	Lookup	List	entries	prior	to	EMu	5.0,	punctuation	was	removed	
before	the	entries	were	processed.	Hence	a	Lookup	List	entry	of	Smith (?)	was	
treated	the	same	as	an	entry	for	Smith,	so	only	one	value	(the	first	one	entered	in	
the	system)	would	be	stored.	The	problem	is	that	these	two	entries	are	very	different	
in	 meaning.	 The	 first	 implies	 a	 level	 of	 uncertainty	 with	 the	 name	 which	 is	 not	
present	in	the	second.	

EMu	5.0	retains	punctuation	when	comparing	Lookup	List	values,	meaning	that	the	
two	entries	in	our	example	are	treated	as	separate	and	we	end	up	with	two	entries	
in	the	Lookup	List	itself.	

 

S E C T I O N 	 5 	





 

 

Index	

A 

Alternative methods • 8 

Anchors • 19 

Auto-phrasing • 23 

C 

Code Points • 3, 15, 16 

Collation • 25 

Conditionals • 22 

E 
Escaped code point • 6 

G 

Graphemes • 9 

I 
Index Terms • 10 

Inputting Unicode Characters • 6 

L 
Lookup Lists • 27 

P 
Proximity • 20 

R 

Raw characters • 7 

Regular Expressions • 18 

S 
Searching • 15 

T 
Transformations • 17 

U 

Unicode • 1, 11 
 


	Release Notes 5.0
	Thesaurus_Browse_View_IE_20151117
	ADO_Reports_emu_IE_20160105
	emu_unicode_IE_20151117_2

