

Copyright © 2014 KE Software Pty Ltd

This work is copyright and may not be reproduced except

in accordance with the provisions of the Copyright Act

EMu Documentation

Release Notes: EMu 4.3
Document Version 1

EMu Version 4.3

 3

Contents

Here you will find collected together the Release Notes for EMu 4.3, alongside all documents

referenced in the notes. These release notes and documents are also available on the EMu

website.

This PDF document brings together a number of individually published documents: please

note that page numbering below refers to this combined PDF document and not to the page

numbers printed at the bottom of pages, as each individual document has its own internal

numbering:

Release Notes: EMu 4.3 5

Scheduled Operations 21

EMu GUID Support 62

http://emu.kesoftware.com/support/downloads/emu
http://emu.kesoftware.com/support/downloads/emu

5

Release Notes: EMu 4.3

Release Date: 07 August 2014

Requirements

 Windows 2003, Vista, Windows 7, Windows 8, Windows 8.1

 Texpress 8.3.013 or later

 TexAPI 6.0.011 or later

 Perl 5.8.8 or later

New Features

Scheduled

Operations

 The Scheduled Operations facility enables the scheduling of time and computing intensive

operations to be run immediately or at a specified date and time. An operation is defined

by:

 The type of operation to run (e.g. delete records)

 The module to which the operation applies

 A time and date to commence the operation

 A list of people to notify when the operation is complete

A scheduled operation is defined and stored as a record in the new Scheduled

Operations module (eoperations). Any files created when the operation is executed

are listed in the Result Files table on the Operation tab. The following three type of

the operations are supported:

 Merge records

 Delete records

 Image import

http://emu.kesoftware.com/en/texpress-version/texpress-version-83.html
http://emu.kesoftware.com/texapi-version/texapi-version-60.html
http://www.perl.org/

6

System administrators may define their own operations. A complete description of

the support for Scheduled Operations can be found in the Scheduled Operations

documentation.

GUID / UUID

support

 A Globally Unique Identifier (GUID) is a persistent unique reference number used

as an identifier in computer software. Increasing global initiatives in data sharing

require the use of a unique identifier for each discrete bit of data (record). The

implementation of GUIDs provides:

 Storage for a list of GUIDs in modules.

 Automatic GUID generation when a record is saved.

Almost all modules have had support added for GUIDs. The exceptions are

modules that store audit based information (e.g. Audit Trails) or system information

(e.g. Registry). The GUID table is located on the Admin tab and consists of the

following value:

 Preferred - which entry in the list of GUIDs is the preferred value.

 Type - the type of the GUID value (e.g. UUID4).

 GUID - the GUID value itself.

GUID values can be auto-generated when a record is saved. Registry entries are

used to determine which tables require auto-generated GUIDs and what type should

be used when generating the GUID. Currently, GUIDs are auto-generated in

compliance with UUID Version 4. An example of a UUID 4 GUID is 84b567d5-

dbbd-468a-be12-770747ebc397.

A complete description of the support provided for GUIDs can be found in the

EMu GUID Support documentation.

http://emu.kesoftware.com/support/documentation/how-to-documents/2090-scheduled-operations
http://emu.kesoftware.com/support/documentation/how-to-documents/2102-guid-support

7

Improvements

Calendar

controls for

batch

updates

 The batch update tools have been updated to include the calendar control introduced

in EMu 4.2. The calendar controls can be found on the following update dialogue

boxes:

 Condition Update

 Location Update

 Taxon Update

 Valuation Update

Image

Magick

upgraded

 ImageMagick, which is used by EMu to view and manipulate images, has been

upgraded to the latest version (6.8.8). The upgrade provides support for a number of

new image formats and fixes a number of issues. In particular, improved support for

DNG (digital negatives) and PDF (portable document format) formats is provided.

8

Issues Resolved

Issue Resolution

The output file for XSLT based reports is saved in files with a .html

extension. If the output type specified in the report via

<xsl:output> is not HTML, then the file extension should reflect

the output type specified.

The extension of the file created for an XSLT based report is based on

the type specified in the <xsl:output> tag.

The label name of the multimedia thumbnail in List View in the

Multimedia module is shown as MulDocumentType. The title is

displayed regardless of the display language selected. The label should

be changed to Multimedia Thumbnail for English and an appropriate

translation for other languages.

The label has been changed from MulDocumentType to Multimedia

Thumbnail. Translations have been added for other languages.

The Summary Data and Extended Data calculations for the Collections

Description module do not handle multiple languages correctly. The

data generated is correct where a single language system is used.

The Summary Data and Extended Data calculations for the Collections

Description module now handles multiple languages correctly.

The Global Replace facility does not allow a global edit to be performed

on a hierarchy where the level being changed is read-only. The

limitation ensures that only existing hierarchy combinations may be

used in a replacement. The restriction means that global replacements

cannot be used to change a read-only hierarchy to a different existing

combination. Ideally it should be possible to alter the value in a

hierarchy where the level being changed is read-only.

The value in a hierarchy where the level being changed is read-only can

now be changed. If the value would form a new hierarchy combination,

then the Global Replace is still allowed. The new hierarchy will be

added to the Lookup List.

An invalid server-side schema file may be produced if a field's prompt

has a single quote character in it. The field prompt is defined in the

database rather than the prompt displayed in the Windows Client. A

correct schema file should be generated even if a field's prompt contains

a single quote.

A valid schema file is now generated even if a field's prompt contains a

single quote character.

9

Issue Resolution

The Windows client installer program does not include the version

information in the Add/Remove Programs section of the Windows

Control Panel. Some desktop roll-out software uses the version

information to determine which software packages need to be upgraded

on a given computer. The version number should be in the same format

as that used with EMu releases.

Version information is now added to the EMu entry in the Add/Remove

Programs section of the Windows Control Panel.

The Windows client creates missing ODBC Data Sources for each

module when it is invoked. If an ODBC Data Source is damaged, that is

key entries are missing, the entry is not repaired. A check for damaged

entries which can then be repaired should be performed.

Damaged ODBC Data Source entries are now repaired when the

Windows client is invoked.

When the selected row in a LinkGrid control with RichEdit controls

associated with it changes, the cursor position in the associated RichEdit

control is not reset to the beginning of the field. The cursor should be

placed at the start of the field when the row in the grid changes.

The cursor in a RichEdit control associated with a LinkGrid is now

placed at the beginning of the field when the selected row in the grid

changes.

The Lookup List server (lutserver) is used to maintain the values in

Lookup Lists. When a hierarchy that contains multiple values at each

level is checked, the server may be slow to check that each combination

exists as a Lookup combination.

The time taken to check hierarchies containing multiple values at each

level has been improved significantly.

The server-side Registry manipulation programs (emuregload,

emuregdelete and emuregupdate) do not correctly handle

Registry entries over 8192 characters long. The error messages emitted

may be somewhat cryptic.

The Registry manipulation programs have been enhanced to handle

infinite length Registry entries. Better error messages are displayed and

a new program emuregcheck has been added to allow the format of

existing Registry entries to be checked.

Server-side scripts that are executed on behalf of a user should produce

output in the language the user last used in the Windows client. A new

Registry entry specifying a user's prompt language should be added. The

entry can then be checked by scripts and used to produce output in the

correct language.

A new Registry entry containing the language last used by a user has

been added. The entry is updated automatically by the Windows client

and is used by server-side scripts to produce output in the correct

language.

10

Issue Resolution

The System|Client|Version Registry entry does not allow the

release date to be included as part of the minimum supported version

number. For example, an entry of 4.2 allows all version 4.2 clients to

be invoked. In some instances a finer grain of control is required. For

example a value of 4.2 (1404031) would block all clients before

version 4.2 (1404031).

The System|Client|Version Registry entry has been changed to

System|Setting|Client|Version and support for release

dates has been added.

If the Calendar pop-up is used to select a date for performing a query,

then the value placed in the field is not wrapped in double quotes. If the

date format is set to dd MMM yyyy, then the search generated will treat

the date as three separate components rather than a single date value.

When a date is selected from a Calendar pop-up that is to be used in a

search, the date is now enclosed in double quotes, ensuring a single date

value is used.

The Narratives module and other modules containing HTML based

editing may not change to Edit mode when the HTML version of the

data is modified. The issue only arises where Internet Explorer 11 is

installed on the user's computer.

When HTML based data is modified, the module is now placed into Edit

mode for computers with Internet Explorer 11 installed.

Export records created via the Scheduled Exports facility cannot be

deleted. The Export records were meant to provide a complete audit of

all data exported and so cannot be deleted. However, due to space

considerations, deletion of older Export records would be useful.

Export records may now be deleted.

The fifoserver does not output Unicode (UTF-8) characters

correctly when logging calls and outputting results. Non-Unicode based

systems (e.g. Latin 1) are not affected.

The correct Unicode characters are now output by the fifoserver.

The title displayed below thumbnails in Contact Sheet mode may be

incorrect if the order of the matching records has been modified in List

mode. The issue is caused by the Contact Sheet cache not being cleared

when records are re-ordered.

The correct title is now displayed below thumbnails in Contact Sheet

mode when records have been re-ordered.

11

Issue Resolution

The server-side Lookup List rebuild program emulutsrebuild

generates an error on Unicode based systems when a Lookup List value

is not encoded correctly. Since the data is already in the system, albeit

incorrectly, emulutsrebuild should generate a warning and

continue processing data.

emulutsrebuild now generates a warning and continues processing

data if an invalid Unicode sequence is encountered.

The error message Column "irn_1" is read only - primary key. in

Column irn may be displayed after a number of modifications have

been made to existing records. The message does not appear when

creating new records. The appearance of the error message is somewhat

random.

The error message is no longer displayed when changing existing

records.

The list of values in a given Lookup List may not be correct when the

field is part of a hierarchy containing a double nested grid. A double

nested grid is a LinkGrid control that is associated with another

LinkGrid control. Selecting a row in an associated grid alters the

contents of the LinkGrid control. The values displayed are generally a

sub-set of the allowable values.

The list of values displayed for a Lookup List in a double nested grid is

now the complete set of values.

Audit records created with ISO-8859-1 (Latin 1) characters as part of

the data may not display correctly in the Audit Trails module. The Latin

1 characters are converted to Unicode (UTF-8) characters and stored in

the Audit table. The conversion should not occur.

Audit records containing Latin 1 characters are now stored and

displayed correctly in the Audit Trails module.

The Microsoft Visual Basic error message Run-time error '1004': This

operation cannot be done because the data is refreshing in the

background. may be displayed when running the Data Dictionary

report in the Field Help module. The error may also occur when other

Microsoft Excel based reports are invoked.

The error message is no longer displayed when the Data Dictionary

report in the Field Help module is run.

The email notifications generated nightly by the server-side

emunotify script may not be sent if the data in the email notification

contains a closing bracket ')' at the end of a line.

The email notifications are now generated and posted regardless of the

data in the notification message.

12

Issue Resolution

The error message Invalid selection has been made. Please use the

Lookup List may appear when a new insertion is commenced. The error

only occurs if the module has a read-only hierarchy of Combo Boxes

and one of the Combo Boxes has the AllowEmpty property set to

false.

The error message is no longer displayed when a new insertion is

commenced.

The Quality field in the Image Attributes group on the Resolutions tab

of the Multimedia module is not populated when the

Multimedia>Generate Resolution>Selected Records command is

selected from the Menu bar.

The Quality field is now populated when the generate resolutions

command is invoked.

If the Edit>Ditto>All Fields command is invoked in the Value (Edit)

field in the Registry module, then only the Value fields are dittoed. The

Value (Edit) field remains empty.

All fields are now dittoed correctly.

If a sort is executed in a LinkGrid control that contains more than two

rows, the data in some cells may appear as though it is not sorted. If the

screen is repainted (by covering the grid and then uncovering it), the

grid is drawn correctly.

The data in the LinkGrid control is now displayed correctly after the

data is sorted.

The Audit Record field on the Summary tab in the Audit Trails module

does not resize when the form size is increased. The field remains the

same size as it was when the module was invoked.

The Audit Record field now resizes correctly when the form size is

increased.

If a selection of records is copied from List View and then pasted into

Microsoft Outlook, the data does not appear in a formatted table. The

data should appear in an HTML based table.

Data copied from List View and pasted into Microsoft Outlook now

appears as a formatted table.

If one or more records are copied from List View and the first column

of data copied contains empty values, the data in rows where the first

column is empty is moved to the left by one column when the records

are pasted into Microsoft Outlook or Word.

Rows where the data in the first column is empty are now pasted

correctly, that is with an empty first column.

The Quality field in the Image Attributes group on the Resolutions tab

of the Multimedia module may be populated with incorrect data when

the Update Resources command is used to populate the value.

The correct value is now stored in the Quality field when updated via

the Update Resources command.

13

Issue Resolution

All database generated error messages contain UTF-8 characters where

non-ASCII characters are required. If a client has an ISO-8859-1 based

system, the error message will not display correctly in the Windows

client. The error message is displayed correctly in Unicode (UTF-8)

based systems.

All database error messages are now displayed with the correct

encoding, regardless of the system character-set used.

The data stored in the Audit Record field on the Summary tab in the

Audit Trails module cannot be copied onto the Windows clipboard. If a

user selects the data (via CTRL+A) and then copies it (via CTRL+C), the

data cannot be pasted (via CTRL+V) into another application.

The data stored in the Audit Record field can now be copied onto the

Windows clipboard.

The error message Cannot locate http://... resource on server may

appear when the Multimedia>Launch Viewer command is invoked.

The page is opened correctly if the Launch Viewer button on the

Multimedia Toolbar is selected or the image in the Image pane is double

clicked.

The error message no longer occurs and the correct page is displayed

when the Multimedia>Launch Viewer command is invoked.

If data is entered into the second or subsequent rows of the Notes

Summary table on the Notes tab in the Conservation module and the

record saved, the data in the second and subsequent records is not saved.

Any data entered into the first row is saved correctly.

Data entered into the second and subsequent rows is now saved

correctly.

If the Parent field links to the current record and the Parts tab is

displayed in the Catalogue module, the Windows client will appear to

freeze. The problem is caused by a link referring to itself.

The Parent linking code has been modified to check for records that link

to themselves. If a record is found, a suitable message is displayed and

an empty Parts tab displayed.

When dittoing into a linked field in a LinkGrid control via the

Edit>Ditto>Current Field command, the linked module is invoked

and a search conducted using the value in the dittoed field. Since the

value is being dittoed, the linked module should not be invoked and the

value just added to the grid.

The linked module is no longer invoked when dittoing a value into a

link field in a LinkGrid control.

14

Issue Resolution

Under certain conditions the server-side Lookup List server (lutserver)

may delete values from the Lookup List module when the values are

still in use. The entries are only deleted if a given value has more than

one punctuation variant (e.g. "Brown, Bill" and "Brown - Bill"). Entries

should only be deleted if they are no longer used in any records.

The Lookup List server no longer deletes values that are still in use.

The server-side Lookup List server (lutserver) may delete values from

the Lookup List module where a Lookup List value is a subset of a

longer Lookup List value (e.g. "Damage" and "Paint Damage"). Entries

should only be deleted if they are no longer used in any records.

The Lookup List server no longer deletes values that are still in use.

The Calendar pop-up button is still displayed when its associated field

is hidden by permissions. The issue only arises in Query mode where

the associated control has had the dvQuery permission removed from

the Column Access Registry entry.

The Calendar pop-up button is now hidden when its associated field is

hidden.

If the Lookup Exact Registry entry is enabled on a field in a hierarchy

and a value is selected from the Lookup List in Query mode, the

displayed value is enclosed in double quotes. If a search is performed,

no matching records will result. The lack of matches is caused by the

double quote characters being included in the search.

The double quote characters are removed from the search term when the

query is performed for columns that have the Lookup Exact Registry

entry enabled.

The Column Access Modifier Registry entry may not be applied

correctly when the field whose value is being checked contains a list of

values. The issue only arises if there are three or more values in the list.

The Column Access Modifier Registry entry is applied correctly for list

fields regardless of the number of entries in the list.

The Add Resource... button on the Multimedia tab in the Multimedia

module may become hidden when a user changes to either Medium or

Large fonts in the Windows font settings.

The Add Resource... button now displays correctly regardless of the

user's Windows font setting.

The error message TexAPI Error: End of file. (Number -18) may

occur when the last record in the Multimedia module is deleted while in

List View. The error will only occur if the last record had an image

associated with it.

The error message no longer occurs when the last record is deleted in

List View.

15

Issue Resolution

The EMu date and time formats are not applied to values entered into

fields created as Admin Task parameters. The current Windows format

is used which may cause a mismatch between the value entered and the

value expected by the Admin Task handler.

The correct date and time formats are now applied to Admin Task

parameters.

Attaching batches of records to the Delete tab in the Operations module

via drag and drop from the Catalogue module may be very slow, even

for small numbers of records.

The time taken to attach records to the Delete tab has been improved

significantly.

17

Upgrade Notes

The upgrade from EMu Version 4.2 to EMu 4.3 involves a number of steps. Please follow the

instructions below carefully.

Do not skip any steps under any circumstances.

Before proceeding with the update please ensure that a complete backup of the EMu server

exists and is restorable.

There are four components that require upgrading:

 Texpress (the database engine)

 TexAPI (web services)

 EMu Server (the application)

 EMu Client (the client)

The notes below detail how to upgrade all systems. Check the Releases table for Client

specific notes.

In the notes below, clientname refers to the name of the client directory for the current

installation. The term ~emu is used to refer to user emu's home directory. This is normally

/home/emu.

Stopping EMu services

1. Log in as emu

2. Enter client clientname

3. Enter ls -l loads/*/data* local/loads/*/data*

4. Check that each data file is empty and that no data.t files exist.

If data.t files do exist, please wait for the loads to drain before proceeding.

5. Enter emuload stop

6. Enter emuweb stop

7. Enter texlicstatus

Make sure no one is using the system.

The upgrade will not complete successfully if users are accessing data.

Record Session

Each step in the upgrade process produces detailed output. In most cases this output will

exceed the size of the screen. It is strongly recommended that the output of the upgrade

session is recorded, so if errors occur, the output can be examined.

1. Enter script /tmp/output-4-3

A new shell will start and all output recorded until the shell is terminated.

http://emu.kesoftware.com/support/downloads/emu/customer-releases

18

Installing Texpress

Installing Texpress 8.3 is only required for the first client upgraded to EMu 4.3. Once

Texpress 8.3 has been installed, this section may be skipped for subsequent upgrades.

1. Enter cd ~emu

2. Enter mkdir -p texpress/8.3.xxx/install (where xxx is the patch level

number).

3. Enter cd texpress/8.3.xxx/install

4. Obtain the appropriate Texpress version for your Unix machine.

Save the release in ~emu/texpress/8.3.xxx/install, calling it

texpress.sh.

5. Enter sh texpress.sh

The Texpress release will be extracted.

6. Enter . ./.profile

7. Enter bin/texinstall ~emu/texpress/8.3.xxx

The Texpress installation script will commence.

8. Enter cd ~emu/texpress/8.3.xxx

9. Enter . ./.profile

10. Enter bin/texlicinfo

Obtain your Texpress licence code and place it in a file called .licence.

11. Enter bin/texlicset < .licence to install the licence.

12. Enter \rm -fr install

13. Enter cd ~emu/texpress

14. Enter ln -s 8.3.xxx 8.3

Upgrading TexAPI

Installing TexAPI is only required for the first client upgraded to EMu 4.3. Once TexAPI has

been installed, this section may be skipped for subsequent upgrades.

1. Enter cd ~emu/texpress

2. Enter mkdir 6.0.xxx

3. Obtain the appropriate TexAPI version for your Unix machine.

Save the release in ~emu/texpress, calling it texapi.sh.

4. Enter sh texapi.sh -i ~emu/texpress/6.0.xxx (expand the ~emu).

5. Enter \rm -f texapi

6. Enter ln -s 6.0.xxx texapi

7. Enter \rm -f texapi.sh

Upgrading EMu Server

1. Enter cd ~emu/clientname

2. Enter mkdir install

3. Enter cd install

4. Obtain the appropriate EMu server version bundle.

Save the release bundle file in ~emu/clientname/install calling it emu.sh.

5. Enter sh emu.sh

The EMu release will be extracted.

http://emu.kesoftware.com/support/downloads/texpress/releases/texpress/1533-texpress-version-83
http://emu.kesoftware.com/support/downloads/texpress/releases/texapi/1442-texapi-version-60
http://emu.kesoftware.com/support/downloads/emu/customer-releases

19

6. Enter . ./.profile

7. Enter bin/emuinstall clientname

The EMu installation script will commence.

8. Enter cd ~emu/clientname

9. Enter cp .profile.parent ../.profile

10. Enter . ../.profile

11. Enter client clientname

12. Enter emureindex

13. Enter vi etc/config

Add the following text to the end of the file (if it does not exist already):

EMUSERVERPORT is the port the EMu client uses to connect to the

EMu server.

The port corresponds to the "Service" value entered in the EMu

Client Login box.

EMUSERVERPORT=port

export EMUSERVERPORT

where port is the service name used to connect to this EMu server.

Save the file.

14. Enter EDITOR=vi crontab -e

Add the following entry to the end of the file:

Run Scheduled Operations

0 20 * * * ~emu/bin/emurun emuoperations 2>&1 | ~emu/bin/emurun

emulogger -t "KE EMu Scheduled Operations Report" -z operations

The start time may need to be varied to fit in with existing maintenance jobs.

15. Removal of the temporary directory (and its contents) is recommended:

Enter \rm -fr install

16. Enter upgrade-4-3

The client will now be upgraded to EMu 4.3. If you are upgrading from a version

prior to EMu 4.3, you must run the upgrade scripts for all versions after the old

version before running the EMu 4.3 upgrade.

Starting EMu services

1. Enter emuload start

2. Enter emuload status

Check that all loads started successfully. Investigate any loads that failed to start.

3. Enter emuweb start

Record Session

The recording of the upgrade session may now be terminated.

1. Enter exit

20

The session output is available in /tmp/output-4-3.

Upgrading EMu Client

EMu 4.3 does not require the new Windows client to be installed on every machine for

network installations. Updating the network server is sufficient. For standalone installations a

new client is required on each machine. To upgrade the EMu Client follow the Installing

EMu Client notes.

http://emu.kesoftware.com/support/downloads/emu/install-upgrade-notes/4-3/unix-new-installation/2115-5-install-emu-client
http://emu.kesoftware.com/support/downloads/emu/install-upgrade-notes/4-3/unix-new-installation/2115-5-install-emu-client

 Page 1

EMu Documentation

Scheduled Operations
Document Version 1.1

EMu version 4.3

Contents

S E C T I O N 1 Overview 1

S E C T I O N 2 How to schedule an operation 3

The Operation tab 3
Delete Operation: the Delete tab 6
Image Import Operation: the Image Import tab 8
Merge Operation: the Merge tab 10

Examples 12
Scenario 1 12
Scenario 2 14

S E C T I O N 3 Viewing Operation Results 17

View Result Files 17
Save all Result Files 18
Save a Result File 18

S E C T I O N 4 How to create an additional type of Scheduled
Operation 19

Storage of Scheduled Operations scripts 20
Invoking a scheduled operation 22
Accessing information from a Scheduled Operations record 23
An example operation 25
Useful functions that may be called from within an operation 30

OpenLogFile 31
FileLog 31
GetStartPosition 32
AddToProcessed 32
GetAttachmentFields 33

S E C T I O N 5 emuoperations 35

Using emuoperations 35
Configuring emuoperations 36

Index 37

Overview

Scheduled Operations

1

Overview

 In order to use the Scheduled Operations facility, a user must have (or
be a member of a group that has) Table Access to the Operations
module (eoperations) and the daInsert operations permission.

The Scheduled Operations facility introduced with EMu 4.3 enables the scheduling
of operations to be run immediately or at a specified date and time. Operations are
scheduled in the Scheduled Operations module, which is accessed by selecting

 in the Command Centre:

With the Scheduled Operations facility it is possible to define:

 The type of operation to run

 The module to apply the operation to

 A time to commence the operation

 People to notify when the operation is complete

A scheduled operation is defined and stored as a record in the Scheduled Operations
module.

When a scheduled operation is run, any files created during the operation are listed
in the Result Files table on the Operation tab. Result files can be viewed and saved.

S E C T I O N 1

Overview

2

Scheduled Operations

Audit logs are produced for all scheduled operations, allowing suitably authorised
users to search / view the results of all operations performed by all users.

EMu 4.3 supports three types of scheduled operation:

 Merge Records

 Delete Records

 Image Import

 System Administrators may define additional types of Scheduled
Operation as required. See How to create an additional type of
Scheduled Operation (page 19) for details.

How to schedule an operation

Scheduled Operations

3

How to schedule an operation

Scheduling an operation is similar to creating any other record.

The Operation tab

1. Select in the Command Centre to display the Scheduled
Operations module:

2. Enter a descriptive name for the operation in the Name: (Operation) field.

3. Select the type of operation to be performed from the Type: (Operation) drop list.

By default, there are three types of operation to choose from:

 Delete (page 6)

Delete a series of IRNs from a module.

 Image Import (page 8)

Import images from a directory into the Multimedia module.

 Merge (page 10)

Merge one or more records with a Target record in a module.

S E C T I O N 2

How to schedule an operation

4

Scheduled Operations

 System Administrators may define additional operations as required.
See How to create an additional type of Scheduled Operation (page 19)
for details.

4. In the Module: (Operation) field, select the module in which the operation is to
be performed.

 When scheduling an Image Import it is not necessary to specify a
module as emultimedia (the Multimedia module) is implicit to the
operation (images are imported into the emultimedia table).

5. In the Execution group of fields specify the time that the operation will be
executed. There are two options:
 At A Specified Time

With this option selected it is possible to specify a Run Date and Run Time
for the operation to commence its processing. This allows operations to be
run outside of normal business hours or at the weekend.

 A date and time specified here is the earliest that the operation will
be run. The actual time at which an operation is run will depend on
when the emuoperations script is scheduled to run (page 22):
emuoperations is the script used to execute an operation that has
been scheduled in a record in the Schedule Operations module (page
35). When emuoperations is run, it looks for any operations that
were scheduled to run prior to the current date and time and
commences them. Thus, if emuoperations is scheduled to run once
per day, it will commence any operation scheduled to run in the
previous 24 hours (in theory an operation could have been scheduled
to run 23 hours and 59 minutes earlier). If emuoperations is to be
run once per day, it probably makes sense therefore to schedule
operations close to the time at which emuoperations is run.
Alternatively, emuoperations can be run at various times throughout
the day.

 Immediately

With this option the operation will commence as soon as the record is
saved.

How to schedule an operation

Scheduled Operations

5

6. In Notify: (Completion Notification) attach the Parties record for anyone who is

to be notified by email when the scheduled operation has completed.

 Email notifications will only be received by parties added to the Notify:
(Completion Notification) table if their Parties record includes a valid
email address in the Email: (Internet Details) field.

Job Status: (Execution) indicates that the operation is waiting to be run, or that
it has been run and is complete. Note that if an operation terminates
unexpectedly, the status will remain as Run until the operation is restarted and
it completes.

How to schedule an operation

6

Scheduled Operations

Delete Operation: the Delete tab

When Delete is selected from the Type: (Operation) drop list on the Operation tab,
the Delete tab displays:

1. The Module field will list the module from which records will be deleted if a
module was specified (Step 4) on the Operation tab (page 3).

If a module was not selected on the Operation tab, specify in the Module field
which module the records are to be deleted from.

2. In the Records To Delete table add the records that are to be deleted from the
module specified in the Module field.

Records can be added through the attachment or drag and drop process:

2.1. Click beside the Records To Delete table to open the module specified
in the Module field.

2.2. Search the module for the record or records to delete and click Attach

Current Record or Attach Selected Records in the Tool bar
to add the record(s) to the Records To Delete table in the Scheduled
Operations module.

-OR-

2.3. Open the module specified in the Module field and search for the record
or records to be deleted.

2.4. Select the record or records in List View and drag and drop them to the
Records To Delete table in the Scheduled Operations module.

3. Save the record:

How to schedule an operation

Scheduled Operations

7

How to schedule an operation

8

Scheduled Operations

Image Import Operation: the Image Import tab

When Image Import is selected from the Type: (Operation) drop list on the
Operation tab, the Image Import tab displays:

1. In Directory Path To Image Files, enter the pathway to the image files to be
imported.

The path may be a full path:
/home/emu/..

or a relative path:

~/../.. or ../..

2. If required, enter an identifier in the Image Import Identifier field. The value
entered here will be stored in the Import Identifier field on the Admin tab of all
Multimedia records created through this scheduled import.

3. Save the record:

How to schedule an operation

Scheduled Operations

9

How to schedule an operation

10

Scheduled Operations

Merge Operation: the Merge tab

When Merge is selected from the Type: (Operation) drop list on the Operation tab,
the Merge tab displays:

1. The Module field will list the module in which records will be merged if a module
was specified (Step 4) on the Operation tab (page 3).

If a module was not selected on the Operation tab, specify in the Module field in
which module the merge will take place.

2. In the Target Record field add the record that will be the target of the merge (i.e.
the record with which one or more records will be merged).

Records can be added through the attachment or drag and drop process:

2.1. Click beside the Target Record field to open the module specified in
the Module field.

2.2. Search the module for the Target Record and click Attach Current

Record in the Tool bar to add the record to the Target Record field
in the Scheduled Operations module.

-OR-

2.3. Open the module specified in the Module field and search for the Target
Record.

2.4. Drag and drop the Target Record to the Target Record field in the
Scheduled Operations module. There are various ways to do this:

 In List View click the record to drag and drop it on the Target Record
field in the Scheduled Operations module.

 Select the record in List View and drag the Drag Current Record

button in the Tool bar to the Target Record field in the

How to schedule an operation

Scheduled Operations

11

Scheduled Operations module.

 Display the record in Details View and drag the Drag Current

Record button in the Tool bar to the Target Record field in the
Scheduled Operations module.

3. In the Records To Be Merged With Target table add the records that are to be
merged with the Target Record

Records can be added through the attachment or drag and drop process
described earlier (page 6).

4. Save the record:

How to schedule an operation

12

Scheduled Operations

Examples

Scenario 1

A record clean up project is under way. As part of the clean up we wish to merge five
variations of John Smith's Parties record into one. As users are still entering records,
we need to wait until 1 July before we can run the Merge.

Solution

1. Add a Scheduled Operations record with a Type of Merge for eparties, scheduled
to run at 12:10 AM on 1 July:

2. Identify one of the five John Smith Parties records as the Target Record and

attach it to the Target Record field on the Merge tab of the Scheduled Operation
record.

3. Add the remaining four Parties records for John Smith to the Records To Be
Merged With Target table:

How to schedule an operation

Scheduled Operations

13

How to schedule an operation

14

Scheduled Operations

Scenario 2

A large number of digital assets have been donated to your institution. Rather than
load them individually, you would like to have them loaded automatically
commencing immediately.

Solution

1. Add a Scheduled Operations record with a Type of Image Import to commence
loading the digital assets immediately:

 When scheduling an Image Import it is not necessary to specify a
module as emultimedia (the Multimedia module) is implicit to the
operation (images are imported into the emultimedia table).

2. On the Image Import tab specify the directory where the digital assets are stored
and an identifier for the created records:

How to schedule an operation

Scheduled Operations

15

When this record is saved the digital asset import will commence without the need
for any further action from the user, who will be able to continue with their other
work.

Viewing Operation Results

Scheduled Operations

17

Viewing Operation Results

Scheduled operations are run automatically by EMu. For each operation executed a
Results File is created and added to the Result Files table on the Operation tab of the
Scheduled Operations record. The files are stored on the EMu server:

View Result Files

1. Select Results>Launch Viewer>[Result File] in the Menu bar.

-OR-

Select the row in the Result Files table with the file to be viewed & click .

The application / viewer associated with the file extension is invoked to display
the file.

S E C T I O N 3

Viewing Operation Results

18

Scheduled Operations

Save all Result Files

1. Select beside the Result Files table

-OR-

Select Results>Save>All in the Menu bar.

The Browse for Folder dialogue displays.

2. Choose the directory into which all Result Files will be saved.

3. Select .

Save a Result File

1. Select Results>Save>[Result File] in the Menu bar:

The Save As dialogue displays.

2. Choose the location to save the Result File and click .

How to create an additional type of Scheduled Operation

Scheduled Operations

19

How to create an additional type of
Scheduled Operation

EMu provides three Scheduled Operations functions by default:

 Delete

 Image Import

 Merge

In this section we examine how System Administrators can create an additional type
of Scheduled Operation.

S E C T I O N 4

How to create an additional type of Scheduled Operation

20

Scheduled Operations

Storage of Scheduled Operations scripts

Each type of Scheduled Operation (e.g. Delete, Merge, etc.) is defined by a script
which resides under the etc/operations or local/etc/operations directory
on the EMu server.

 When adding a script for an additional type of Scheduled Operation for
your EMu system, place it under local/etc/operations to avoid
the risk of having it overwritten during EMu upgrades.

The script includes the name of the operation which will be listed in the Type:
(Operation) drop list on the Operation tab of the Scheduled Operations module.

When the emuoperations process runs it scans the etc/operations and
local/etc/operations directories to locate the scripts for all types of Scheduled
Operations (files that end with a .pl extension) and registers a name for each type
of operation found. The following example registers the Delete Scheduled
Operation:

sub

Register

{

 my $plugins = shift;

 #

 # We handle the "Delete" method.

 #

 $plugins->{"Delete"} = \&Delete;

}

When a new type of Scheduled Operation is added to EMu, a Lookup List entry needs
to be added to the Operation Type Lookup List. For the above example a Lookup List
record was added to the Operation Type Lookup List with a value of Delete:

How to create an additional type of Scheduled Operation

Scheduled Operations

21

How to create an additional type of Scheduled Operation

22

Scheduled Operations

Invoking a scheduled operation

When scheduling an operation in a record in the Scheduled Operations module, the
operation can be scheduled to commence:
 At A Specified Time

-OR-
 Immediately
If Commence: (Execution) is set to Immediately, the operation will be invoked as
soon the Scheduled Operations record is saved. The operation will commence
running on the EMu server and control returned to the user to continue with their
work.
If Commence: (Execution) is set to At A Specified Time, the operation will be
invoked by the emuoperations script on the EMu server at the appropriate time.

 The execution of each pending operation consumes a licence in the
same way that a user would consume a licence to complete the task.
Similarly to users performing tasks, multiple operations can be run
simultaneously up to the system licence limit.

The emuoperations script is designed to be run from cron with an entry similar to
the following:

30 17 * * * /home/ke/emu/client/bin/emurun emuoperations 2>&1 |

/home/ke/emu/client/bin/emurun emulogger -t "KE EMu Operations" -z

operations

The script is typically run once per day but can be configured to run any number of
times during the day. When the emuoperations script runs it looks for any
operations that were scheduled to run prior to the current date and time and
commences them.

 A date and time specified in a Scheduled Operations record is thus the
earliest that the operation will be run. The actual time at which an
operation is run will depend on when the emuoperations script is
scheduled to run (page 22): emuoperations is the script used to
execute an operation that has been scheduled in a record in the
Schedule Operations module (page 35). When emuoperations is run,
it looks for any operations that were scheduled to run prior to the
current date and time and commences them. Thus, if emuoperations
is scheduled to run once per day, it will commence any operation
scheduled to run in the previous 24 hours: in theory an operation
could have been scheduled to run 23 hours and 59 minutes earlier. If
emuoperations is to be run once per day, it probably makes sense
therefore to schedule operations close to the time at which
emuoperations is run. Alternatively, emuoperations can be run at
various times throughout the day.

emuoperations will also re-run any previous operations that did not complete.

How to create an additional type of Scheduled Operation

Scheduled Operations

23

Accessing information from a Scheduled
Operations record

Each type of Scheduled Operation registers a function that is called to process the
operation. For example, the Delete Scheduled Operation is performed by a registered
function called Delete.

sub

Register

{

 my $plugins = shift;

 #

 # We handle the "Delete" method.

 #

 $plugins->{"Delete"} = \&Delete;

}

The function is passed two parameters:

 An IMu session which allows access to EMu records to perform the operation.

 A hash of data from a Scheduled Operations record with details about this
particular operation (i.e. when, what records are affected, what module, etc.).
sub

Delete

{

 my $imusession = shift;

 my $record = shift;

 #

 # Run the "Delete" operation.

 #

 …

}

How to create an additional type of Scheduled Operation

24

Scheduled Operations

The list of keys available in the hash are:

Irn The IRN of a record in the Scheduled Operations module
with details about this scheduled operation.

Name The name of the operation.

Type The type of operation.

Module The module the operation is to be performed on.

ActionIrn The target IRN for the Merge operation.

IrnsToProcess The list of IRNs that the operation needs to process.

IrnsProcessed The list of IRNs that the operation has already processed.

 Typically this would be an empty list except when
an operation failed to complete.

Directory The directory which contains files / information required
by an operation to process.

Identifier An identifier to add to records updated as part of running
the operation.

The values for the keys are accessed through the $record parameter, e.g.:

$record->{Module}

-OR-

@{$record->{IrnsToProcess}}

How to create an additional type of Scheduled Operation

Scheduled Operations

25

An example operation

In this example a list of IRNs is deleted:

#!/usr/bin/perl

use strict;

use warnings;

use lib "$ENV{EMUPATH}/utils/imu/lib";

use IMu::Module;

Registration function.

no warnings 'redefine';

sub

Register

{

 my $plugins = shift;

 #

 # We handle the "Delete" method.

 #

 $plugins->{"Delete"} = \&Delete;

}

use warnings 'redefine';

The handler for the "Delete" operation

sub

Delete

{

 my ($imusession, $record) = @_;

 my ($attachments, $start, @deleteirns, $irn, $i);

 #

 # Check that we have the required information

 #

 if (! defined($record->{IrnsToProcess}) ||

@{$record->{IrnsToProcess}} == 0)

 {

 FileLog("Error: no irns supplied for

deletion");

 return(1);

 }

 elsif (! defined($record->{Module}) or $record-

>{Module} eq "")

 {

 FileLog("Error: delete module is not

defined");

 return(1);

How to create an additional type of Scheduled Operation

26

Scheduled Operations

 }

 #

 # Get the other information that we need to process

 #

 $attachments = GetAttachmentFields($record-

>{Module});

 @deleteirns = @{$record->{IrnsToProcess}};

 $start = GetStartPosition($record);

 FileLog("Running DELETE plugin for $record-

>{Module}");

 FileLog("%d records scheduled for deletion, starting

at position $start", scalar(@deleteirns));

 #

 # Now delete each record in turn

 #

 for ($i = $start; $i < @deleteirns; $i++)

 {

 $irn = $deleteirns[$i];

 FileLog("Deleting irn $irn...");

 last if (! ProcessDeletion($imusession,

$attachments, $irn, $record));

 AddToProcessed($irn);

 }

 return($i != @deleteirns);

}

Do the actual deletion work

sub

ProcessDeletion

{

 my ($imusession, $attachments, $irn, $record) = @_;

 my ($table, $colname, $module, @matches, $hits,

%found, $key, $column);

 eval

 {

 %found = ();

 foreach $key (keys %{$attachments})

 {

 #

 # The assignment here is unusual but

it gets around an

 # odd foreach scoping problem after

an exception is thrown.

 #

 $table = $key;

 $module = IMu::Module->new($table,

$imusession);

 foreach $column (keys

%{$attachments->{$table}})

How to create an additional type of Scheduled Operation

Scheduled Operations

27

 {

 #

 # Find records which match

this irn

 #

 $colname = $column;

 $hits = $module-

>findTerms([$colname, $irn]);

 next if ($hits <= 0);

 #

 # Add records to found hash

 #

 FileLog("Found $hits matches

for $colname in $table");

 push(@{$found{$table}-

>{$colname}}, GetMatches($module));

 }

 }

 };

 if ($@)

 {

 FileLog("Error: failed to process $colname

in $table for irn $irn: $@");

 return(0);

 }

 @matches = keys %found;

 if (@matches)

 {

 #

 # Log that we cannot delete the record

 #

 FileLog("Unable to delete irn $irn because

it is attached in the following places:");

 foreach $table (@matches)

 {

 foreach $colname (keys

%{$found{$table}})

 {

 FileLog("\tModule: $table,

Column: $colname, Record(s): " . join(", ",

@{$found{$table}->{$colname}}));

 }

 }

 }

 else

 {

 #

 # Delete the record

 #

 DeleteRecord($imusession, $irn, $record);

 }

 #

 # Add irn to processed

How to create an additional type of Scheduled Operation

28

Scheduled Operations

 #

 return(1);

}

Delete the record

sub

DeleteRecord

{

 my ($imusession, $irn, $record) = @_;

 my ($module, $hits, $result);

 eval

 {

 $module = IMu::Module->new($record-

>{Module}, $imusession);

 $hits = $module->findKey($irn);

 if ($hits > 0)

 {

 $result = $module->remove("start",

0, 1);

 if ($result == 0)

 {

 FileLog("Failed to delete

irn $irn from $record->{Module}");

 }

 }

 else

 {

 FileLog("Failed to find irn $irn in

$record->{Module}");

 }

 };

 if ($@)

 {

 FileLog("Failed to delete $irn from $record-

>{Module}: $@");

 }

}

Get all the records that match the attachment query

sub

GetMatches

{

 my ($module) = @_;

 my ($result, @matches, $row);

 #

 # Get all of the records at once

 #

How to create an additional type of Scheduled Operation

Scheduled Operations

29

 @matches = ();

 $result = $module->fetch("start", 0, -1, "irn");

 if ($result->{count})

 {

 #

 # Get the irn for each row and push it to

the list of matches

 #

 foreach $row (@{$result->{rows}})

 {

 push(@matches, $row->{irn});

 }

 }

 return(@matches);

}

1;

How to create an additional type of Scheduled Operation

30

Scheduled Operations

Useful functions that may be called from
within an operation

The following functions are available to be called for use within an operation:

OpenLogFile (page 31) Opens a results log file and adds it to the list of
Result Files.

FileLog (page 31) Writes a message to the standard operation
Result File.

GetStartPosition (page 32) Determines from what position to start
processing the IrnsToProcess list.

AddToProcessed (page 32) Adds the processed IRN to the IrnsProcessed
list.

GetAttachmentFields (page 33) Returns a hash of all attachment fields for a
module.

How to create an additional type of Scheduled Operation

Scheduled Operations

31

OpenLogFile

Input parameters: Filename

Returns: File Handle for writing and an indication if the file already exists
(from a previous attempt to run the operation)

sub

DoSomething

{

 my $handle;

 my $exists;

 #

 # Open a file for logging results.

 #

 ($handle, $exists) = OpenLogFile("results.csv");

 if ($exists)

 {

 print $handle "...Resuming processing...";

 }

 …

 close($handle);

}

FileLog

Input parameters: Format string and parameters

Returns: Nothing

sub

DoSomething

{

 #

 # Log a message.

 #

 FileLog("Error: no irns supplied for deletion");

 …

 #

 # Log a formatted message.

 #

 FileLog("%d records scheduled for deletion, starting

at position $start", scalar(@deleteirns));

}

How to create an additional type of Scheduled Operation

32

Scheduled Operations

GetStartPosition

Input parameters: Record hash passed to operation

Returns: Index into IrnsToProcess

sub

Operation

{

 my $imusession = shift;

 my $record = shift;

 my $start;

 #

 # Get the start position for processing the

operation.

 #

 $start = GetStartPosition($record);

 …

}

AddToProcessed

Input parameters: IRN

Returns: Nothing

sub

Operation

{

 my $imusession = shift;

 my $record = shift;

 my $irn;

 …

 #

 # Finished processing the operation on an irn.

 #

 AddToProcessed($irn);

 …

}

How to create an additional type of Scheduled Operation

Scheduled Operations

33

GetAttachmentFields

Input parameters: Module

Returns: A hash of modules with attachment columns to the requested
module

sub

Operation

{

 my $imusession = shift;

 my $record = shift;

 my $attachments;

 my $module;

 my $column;

 …

 #

 # Get the attachment fields for the operation

module.

 #

 $attachments = GetAttachmentFields($record-

>{Module});

 …

 #

 # Process the attachment fields.

 #

 foreach $module (keys %{$attachments})

 {

 foreach $column (keys %{$attachments-

>{$module}})

 {

 …

 }

 }

 …

}

emuoperations

Scheduled Operations

35

emuoperations

emuoperations is a script used to execute scheduled operations.

 A date and time specified in a Scheduled Operations record is the
earliest that the operation will be run. The actual time at which an
operation is run will depend on when the emuoperations script is
scheduled to run (page 22). When run, emuoperations looks for any
operations that were scheduled to run prior to the current date and
time and commences them. Thus, if emuoperations is scheduled to
run once per day, it will commence any operation scheduled to run in
the previous 24 hours (in theory an operation could have been
scheduled to run 23 hours and 59 minutes earlier). If emuoperations
is to be run once per day, it probably makes sense therefore to
schedule operations close to the time at which emuoperations is run.
Alternatively, emuoperations can be run at various times throughout
the day.

Using emuoperations

emuoperations may be used in two ways:

1. Run all Scheduled Operations

Usage: emuoperations

Any Scheduled Operations required to be run will be executed. The current date
and time is used to determine what operations are required. This form of the
command is used by cron on a daily basis to ensure all Scheduled Operations for
the given day are performed.

2. Run a specific Scheduled Operation

Usage: emuoperations -iirn

The irn argument is the IRN of a Scheduled Operations record to be executed.
This form of emuoperations is useful for testing new operations as it allows a
specific operation to be run without waiting for the Scheduled Operations date
and time to arrive.

S E C T I O N 5

emuoperations

36

Scheduled Operations

Configuring emuoperations

The emuoperations script connects to an imuserver to perform the scheduled
operations. This connection needs to be made on a specific port. By default the
standard EMu configuration port for IMu is the port number 20,000 greater than
EMu’s client connection port. For example, if the standard EMu client connection
port is 20000, the standard imuserver connection port is 40000.

The emuoperations imuserver must run on a different port to perform the
scheduled operations. The eoperations load starts the imuserver for handling
operation requests. The port for emuoperations to connect on is defined by the
EMUSERVERPORT environment variable plus 30000. EMUSERVERPORT is the port the
EMu client uses to connect to the EMu server and corresponds to the Service value
entered in the EMu Client login box.

It is recommended that the Administrator sets the EMUSERVERPORT environment
variable in the etc/config file on the EMu server. Add the following text to the end
of the etc/config file (if it does not exist already):

EMUSERVERPORT is the port the EMu client uses to connect to the

EMu server.

The port corresponds to the "Service" value entered in the EMu

Client Login box.

EMUSERVERPORT=port

export EMUSERVERPORT

where port is the service name used to connect to this EMu server.

Scheduled Operations

37

Index

A

Accessing information from a Scheduled Operations

record • 23

AddToProcessed • 30, 32

An example operation • 25

C

Configuring emuoperations • 36

D

Delete Operation

the Delete tab • 3, 6, 11

E

emuoperations • 4, 22, 35

Examples • 12

F

FileLog • 30, 31

G

GetAttachmentFields • 30, 33

GetStartPosition • 30, 32

H

How to create an additional type of Scheduled Operation

• 2, 4, 19

How to schedule an operation • 3

I

Image Import Operation

the Image Import tab • 3, 8

Invoking a scheduled operation • 4, 22, 35

M

Merge Operation

the Merge tab • 3, 10

O

OpenLogFile • 30, 31

Overview • 1

S

Save a Result File • 18

Save all Result Files • 18

Scenario 1 • 12

Scenario 2 • 14

Storage of Scheduled Operations scripts • 20

T

The Operation tab • 3, 6, 10

U

Useful functions that may be called from within an

operation • 30

Using emuoperations • 35

V

View Result Files • 17

Viewing Operation Results • 17

 Page 1

EMu Documentation

EMu GUID Support
Document Version 1

EMu version 4.3

Contents

S E C T I O N 1 GUID Support 1

Storage of GUIDs in EMu modules 2
Auto-generation of GUID on record save 4
Considerations when enabling GUID support 5
GUID Registry entries 6

GUID Enabled Registry entry 7
GUID Auto Types Registry entry 9

Index 13

GUID Support

EMu GUID Support

1

GUID Support

A Globally Unique Identifier (GUID) is a persistent unique reference number used
as an identifier in computer software. The term GUID typically refers to various
implementations of the Universally Unique Identifier (UUID) standard but is often
more generally used to refer to other unique identification methods.
Comprehensive details about UUIDs, such as how they are stored (typically as
128-bit values, commonly displayed as 32 hexadecimal digits with groups
separated by hyphens) and how they are generated can be found on Wikipedia.

With increasing global initiatives in data sharing, the need for a unique identifier
for each discrete bit of data is increasingly important. Already organisations such
as the US National Science Foundation (NSF) mandate the use of GUIDs for those
wishing to participate in its programs.

GUID support is being implemented in EMu in four phases:

1. Storage of GUIDs in EMu modules

2. GUID generation on EMu record save

3. Local IMu web service for local resolution of EMu GUIDs

4. Global IMu web service portal for global resolution of EMu GUIDs

As of July 2014 the first two phases have been completed.

S E C T I O N 1

http://en.wikipedia.org/wiki/Globally_unique_identifier

GUID Support

2

EMu GUID Support

Storage of GUIDs in EMu modules

Almost all EMu modules are capable of making use of GUIDs. Exceptions include:

 Audit Trails (eaudit)

 Condition Checks (econdition)

 Field Help (efieldhelp)

 Gazetteer (egazetteer)

 Internal Movements (einternal)

 Scheduled Operations (eoperations)

 Registry (eregistry)

 Statistics (estatistics)

 Valuations (evaluations)

where the use of GUIDs is thought to be unnecessary. For all GUID capable modules
a GUIDs table displays on the Admin tab, allowing GUIDs to be added, edited,
displayed, searched and included in reports:

The GUIDs table comprises three columns:

 Field Value

 Preferred Yes / No. Only one GUID in the GUIDs table can be marked as preferred.

 Type Lookup List of GUID types.

 GUID The GUID itself.

GUID Support

EMu GUID Support

3

The GUIDs table can hold multiple internally generated and externally generated
identifiers.

The GUID fields are also available for querying in Search mode:

GUID Support

4

EMu GUID Support

Auto-generation of GUID on record save

EMu can auto-generate GUID values on record save. Currently, GUIDs are
auto-generated in compliance with UUID Version 4 (page 11).

 EMu's GUID support is extensible and it is possible for organisations
to substitute or extend the base EMu code to generate other or
additional GUIDs. Please contact KE Support for details.

By default, GUID auto-generation is disabled for all modules.

In order to enable auto-generation of GUIDs in a module (or system-wide), the two
GUID Registry entries must be specified:

 GUID Enabled Registry entry (page 7) must be set to true

-AND-

 A GUID Auto Types Registry entry (page 9) must specify which GUID type(s) to
generate for a module (or system-wide). Currently only UUID4 is supported.

On record save EMu checks whether the GUIDs table includes an entry for each
type specified in a GUID Auto Types Registry entry, and generates a GUID for each
type that is missing.

Currently EMu will auto-generate a UUID Version 4 GUID if one has not already
been added to the record's GUIDs table.

GUID Support

EMu GUID Support

5

Considerations when enabling GUID
support

 Organisations may need to consider their policy for deleting records that
contain locally generated GUIDs. Once a record is assigned a GUID, that record
should generally never be deleted. KE’s preference has always been that
records are Retired (using Record Level Security settings) rather than
deleted. A Retired record is hidden from all users except for those authorised
to view it.

 The merging of records that contain GUIDs is another case to be considered.
Organisations may want to retain the old GUID(s) from the merged record(s)
within the GUIDs table on the master record (i.e. the one into which the merge
took place).

GUID Support

6

EMu GUID Support

GUID Registry entries

By default, GUID auto-generation is disabled for all modules.

In order to enable auto-generation of GUIDs in a module (or system-wide), the two
GUID Registry entries must be specified:

 GUID Enabled Registry entry (page 7) must be set to true

-AND-

 GUID Auto Types Registry entry (page 9) must specify which GUID type(s) to
generate. Currently only UUID4 is supported.

On record save EMu checks whether the GUIDs table includes an entry for each
type specified in the GUID Auto Types Registry entry, and generates a GUID for
each type that is missing.

Currently EMu will auto-generate a UUID Version 4 GUID if one has not already
been added to the record's GUIDs table.

GUID Support

EMu GUID Support

7

GUID Enabled Registry entry

Registry Entry Purpose

GUID Enabled Specifies whether or not auto-generation of GUIDs is enabled
for a table or system-wide.

Overview

A Globally Unique Identifier (GUID) is a persistent unique reference number used
as an identifier in computer software. Almost all EMu modules are capable of
making use of GUIDs. Exceptions include:

 Audit Trails (eaudit)

 Condition Checks (econdition)

 Field Help (efieldhelp)

 Gazetteer (egazetteer)

 Internal Movements (einternal)

 Scheduled Operations (eoperations)

 Registry (eregistry)

 Statistics (estatistics)

 Valuations (evaluations)

where the use of GUIDs is thought to be unnecessary.

By default auto-generation of GUIDs is disabled. With this Registry entry, it is
possible to enable GUID support on a per table or system-wide basis.

 In order to enable auto-generation of GUIDs on record save, a GUID
Auto Types Registry entry (page 9) must also specify which GUID
type(s) to generate. Currently only UUID4 is supported.

Format of the Registry entry

The format of this Registry entry is:

 System|Setting|Table|table|GUID Enabled|boolean

System|Setting|Table|Default|GUID Enabled|boolean

where:

 boolean is true (auto-generation of GUIDs is enabled) or false
(auto-generation of GUIDs is disabled).

 If this entry is not present, a setting of false is
assumed.

GUID Support

8

EMu GUID Support

Example

This entry specifies that auto-generation of GUIDs is enabled for the Catalogue
module:

Field Value

Key 1 System

Key 2 Setting

Key 3 Table

Key 4 ecatalogue

Key 5 GUID Enabled

Value true

GUID Support

EMu GUID Support

9

GUID Auto Types Registry entry

Registry Entry Purpose

GUID Auto Types Specifies which GUID variant is used when auto-generating a
GUID on record save. Auto-generation of GUIDs also requires
the GUID Enabled Registry entry (page 7) to be set to true.

Overview

A Globally Unique Identifier (GUID) is a persistent unique reference number used
as an identifier in computer software. Almost all EMu modules are capable of
making use of GUIDs. Exceptions include:

 Audit Trails (eaudit)

 Condition Checks (econdition)

 Field Help (efieldhelp)

 Gazetteer (egazetteer)

 Internal Movements (einternal)

 Scheduled Operations (eoperations)

 Registry (eregistry)

 Statistics (estatistics)

 Valuations (evaluations)

where the use of GUIDs is thought to be unnecessary.

EMu can auto-generate GUID values on record save. Currently, GUIDs are
auto-generated in compliance with UUID Version 4 (page 11).

 EMu's GUID support is extensible and it is possible for organisations
to substitute or extend the base EMu code to generate other or
additional GUIDs. Please contact KE Support for details.

By default, GUID auto-generation is disabled for all modules.

In order to enable auto-generation of GUIDs in a module (or system-wide), the two
GUID Registry entries must be specified:

 GUID Enabled Registry entry (page 7) must be set to true

-AND-

 A GUID Auto Types Registry entry must specify which GUID type(s) to
generate. Currently only UUID4 is supported.

On record save EMu checks whether the GUIDs table includes an entry for each
type specified in the GUID Auto Types Registry entry, and generates a GUID for
each type that is missing.

Currently EMu will auto-generate a UUID Version 4 GUID if one has not already
been added to the record's GUIDs table.

GUID Support

10

EMu GUID Support

Format of the Registry entry

The format of this Registry entry is:

 System|Setting|Table|table|GUID Auto Types|type;type;...

System|Setting|Table|Default|GUID Auto Types|type;type;...

where:

 type;type;... is a semicolon separated list of GUID variants.

 Currently only UUID Version 4 is supported.

Example

This entry specifies that when a GUID is auto-generated on record save in all
available tables, the GUID generated will comply with the UUID Version 4 variant:

Field Value

Key 1 System

Key 2 Setting

Key 3 Table

Key 4 Default

Key 5 GUID Auto Types

Value UUID4

GUID Support

EMu GUID Support

11

UUID Version 4 GUID

The GUID Enabled Registry entry (page 7) specifies whether GUID support is
enabled for a table or system-wide (by default GUID support is disabled). The GUID
Auto Types Registry entry (page 9) specifies which GUID formats are to be
auto-generated. In theory more than one variant can be used to specify the
auto-generated GUIDs but EMu currently supports only UUID Version 4.

For more details see:

 http://en.wikipedia.org/wiki/Universally_unique_identifier

A UUID is a 128 bit quantity typically represented in text as a 32 character
hexadecimal string with hyphen separators at set positions. For example:

84b567d5-dbbd-468a-be12-770747ebc397

71820e9a-1eb0-4b02-9382-20de614fbcdc

UUID Version 4 is an extensively used GUID generation method that provides a
randomly generated GUID with infinitesimal probability of a duplicate. A prime
advantage of this scheme is that GUIDs can be generated quickly and locally on
demand without contacting a central naming authority or having to pre-allocate
identifiers.

A UUID can be represented simply as a Uniform Resource Name (URN). For
example:

urn:uuid:84b567d5-dbbd-468a-be12-770747ebc397

urn:uuid:71820e9a-1eb0-4b02-9382-20de614fbcdc

The URN name space identifier of uuid is used.

Refer to:

 http://en.wikipedia.org/wiki/Uniform_resource_identifier

 http://en.wikipedia.org/wiki/Uniform_resource_name

 http://en.wikipedia.org/wiki/Uniform_resource_locator

http://en.wikipedia.org/wiki/Universally_unique_identifier
http://en.wikipedia.org/wiki/Uniform_resource_identifier
http://en.wikipedia.org/wiki/Uniform_resource_name
http://en.wikipedia.org/wiki/Uniform_resource_locator

EMu GUID Support

13

Index

A

Auto-generation of GUID on record save • 4

C

Considerations when enabling GUID support • 5

G

GUID Auto Types Registry entry • 4, 6, 7, 9, 11

GUID Enabled Registry entry • 4, 6, 7, 9, 11

GUID Registry entries • 6

GUID Support • 1

S

Storage of GUIDs in EMu modules • 2

U

UUID Version 4 GUID • 4, 9, 11

	Release Notes 4.3
	scheduled_operations_IE_EMu_20140813
	GUID Support_IE_20140722

