
Auditing Facility
• Overview
• The Auditing system
• emuaudit
• Audit service
o Audit Trails module
o Audit tab
o Disabling auditing

• Archiver service
• Sync service
• Adding a new service
• Overriding filters

Overview

During the day to day operation of EMu there may be times when an administrator or user
wants details about who changed a record, when it was changed and what changes were made.
An auditing facility creates audit trails, a sequence of records that describe the operations
performed by a user and the time at which the changes were made. These records generally
include the:

• operation performed (e.g. insertion, update, etc.)
• module affected (e.g. eparties)
• name of the user
• date and time
• IRN of the record affected
• data specific to the operation performed (e.g. fields changed for an update)
• database sub-system that performed the operation

EMu has provided simple auditing facilities since it was first released. In particular, every
record in EMu includes the name of the person who last changed it, along with the date and
time of the modification. Similar information is stored about the creation of the record. These
details are located on the Admin tab of each module (usually the last tab in a module).

The EMu database manager also provides simple audit trails on a per module basis. These audit
trails can be accessed via the texaudit command. In general, this level of auditing has not
been used as it requires manual configuration and the level of information produced is restricted
to operations performed rather than to data specific changes (i.e. what fields changed values
when this record was updated).

EMu 3.2.04 sees the introduction of a fully integrated auditing facility. The facility includes a
new module, Audit Trails (eaudit), which contains complete audit trails for all operations
registered for monitoring. There are five levels for which audit records may be generated:

• change (insertions, updates, deletions)
• search (queries)
• display (viewed, sorted, reported)
• login (first access of a module in current session)
• all (all database operations)

Each of these may be set on a per module basis, which means that it is possible to monitor all
changes to records in the Parties module, for instance, while Multimedia records may be
audited for changes, searches and records viewed.

Copyright 2007 KE Software Pty. Ltd. 1

Every EMu module now contains an Audit tab that lists all audit trail records for the current
record. Each record details the operation performed, who performed it and the date on which it
was performed. From this tab it is also possible to view the complete audit trail record in the
Audit Trails module.

The new facility is extensible, which allows other services that require access to detailed
information about record changes to take advantage of its framework. In particular two other
services use the audit framework to monitor record modifications. The first is the archiver
service, which allows raw XML audit trail records to be stored in a file. The second is the sync
service, which is used to ensure that dependent records are updated when the master record is
changed.

The Auditing system

The Auditing system comprises several components that together provide the services
necessary to record audit trails as well as a data stream of record changes that other services use
to monitor data. The diagram below illustrates the components that make up the Auditing
system:
 database manager
 |
 | (XML audit record)
 |
 audit load
 |
 |
 |
 auditserver
 |
 +-------------------+-------------------+-------------------+
 | | | |
 | | | |
 audit (filter) archiver (filter) default (filter) filter
 | | | |
 | | | |
 audit (handler) archiver (handler) sync (handler) handler
 |
 |
 eaudit load

database manager
The EMu database manager carries out all operations on the underlying database tables. Each
table can have a set of auditing options enabled that detail what operations should produce audit
records. These options are defined in the opts file located in the database directory. For
example, the Parties module opts file can be found at data/eparties/opts. As an example, if
record insertions, updates and deletions were audited, the opts file would be similar to:
xmlaudit=on
xmlauditpath=/home/ke/emu/artdemo/loads/audit
xmlauditoptions=update;updatehistory;insert;delete;tempinsert;
tempdelete;tempupdate;tempmove

The xmlaudit option simply enables auditing for the table. Each audit record is an XML entry
that is added to the file defined by the xmlauditpath option. The xmlauditoptions entry
lists all the table operations that should be audited. The list shown audits all record insertions
updates and deletions. Administrators do not need to understand the contents of the opts file as
it is maintained and modified by the emuaudit command, which is discussed in the next
section.

Copyright 2007 KE Software Pty. Ltd. 2

The XML below was generated when a search for a first name of Fred and a surname of
Smith was performed:
<audit>
 <prog>texserver</prog>
 <module>eparties</module>
 <date>2007-11-15 10:28:56</date>
 <user>emu</user>
 <op>query</op>
 <data>
 <ident>#1195082936.198211</ident>
 <querystr>select all from eparties where true and
((((NamFirst contains 'Fred')))) and ((((NamLast contains
'Smith'))))</querystr>
 <matchcount>0</matchcount>
 </data>
</audit>

The <data> element contains information that is specific to the operation type. In the case of a
query, this is the query statement executed, the number of matches found and an identifier for
this query that can be used to match up audit records produced when a matching record is
viewed.

All tables have the same xmlauditpath entry, ensuring that all XML audit records are placed
in the same file. The file used is loads/audit/audit.xml.

audit load
A new background load has been added to handle XML audit information placed in
loads/audit/audit.xml. The load is called audit and is controlled via the emuload command.
When the audit load is started it executes the auditserver command, which manages the
contents of the XML audit file loads/audit/audit.xml. Administrators can stop the processing
of the audit.xml file (although data will continue to accumulate) by executing:
emuload stop audit

The load can be restarted using:
emuload start audit

auditserver
When the audit background load commences it starts auditserver running. The auditserver is
found at utils/auditserver. It is this server that does all the processing of the XML audit
records. The server reads one XML audit record at a time and passes the record to a number of
filters. These filters are located in etc/audit/filters (or local/etc/audit/filters for localised
filters). The filters decide whether a handler should do something with the audit record, or
whether the record should be ignored. If a filter indicates that the record should be processed,
the corresponding handler (located in etc/audit) is passed the XML audit record to process the
record based on its particular function (e.g. produce an audit trail record, archive the record for
later examination, etc.).

An example may make the process a little clearer. Consider the audit trail filter
(etc/audit/filters/audit.pl) and handler (etc/audit/audit.pl). When auditserver reads an XML
audit record it invokes the Filter() function inside the filter, which indicates whether the
record should be processed. If processing is required, auditserver passes the XML audit record
to the Audit() function inside the handler, which builds a data record suitable for loading into
the eaudit background load.

When auditserver starts it scans the etc/audit and local/etc/audit directory to locate all
handlers (files that end with a .pl extension). For each handler it checks whether a filter exists
in etc/audit/filters (called Filter()) and local/etc/audit/filters (called LocalFilter()). If

Copyright 2007 KE Software Pty. Ltd. 3

a filter with the same name as the handler is found, it is also registered. If a filter is not found, a
default filter is used that always indicates the XML audit record is to be processed.

filter
A filter is a perl script that is invoked by auditserver to determine whether an XML audit
record should be passed onto a handler, or whether it should be ignored. The filter consists of a
single function called Filter(), which returns a non-zero value if the XML audit record is to
be ignored.

handler
When an XML audit record is approved for handling, auditserver invokes the handler by
calling the Audit() function. The function uses the XML audit record to perform any
processing required. In the case of the archiver handler, the XML audit record is written to a
file for archiving.

emuaudit

The emuaudit command is used to control the types of operations that are audited by the
database manager. All auditing is performed by the database manager on the EMu server. As
the database manager handles all access methods to the data, audit information is generated
regardless of the access method used. For example, if a module has search auditing operations
enabled, audit records are generated for searches performed via the EMu Windows client, the
EMu Web interface or the texql command line processor.

The emuaudit command is located on the EMu server and can only be accessed by user emu,
that is the EMu System Administrator account.

To determine the operations audited for a given module, run emuaudit followed by the name of
the table. For example to check the Loans module (eloans table) settings use:
emuaudit eloans
eloans change

The change setting indicates that auditing for the Loans module is enabled for operations that
alter records (that is insertions, updates and deletions). To list all modules settings, enter
emuaudit without supplying a module name.
emuaudit
eaccessionlots change
ebibliography change
ecatalogue search,change
econdition change
econservation change
edocuments change
eevents change
efieldhelp change
egroups change
einsurance change
einternal change
eloans change
elocations change
emovements change
emultimedia change
enarratives change
eparties all
eregistry change
erights change
etemplate change
ethesaurus change

Copyright 2007 KE Software Pty. Ltd. 4

evaluations change

Notice that both ecatalogue and eparties are auditing more than just changes made to records.
The list of available operations for auditing is:

• change
• search
• display
• login
• all

These operations are explained below.

change
The change operation audits any activity that results in a record being created, modified or
deleted. This is the default operation for all modules and is used to track who has made changes
to records. It is not possible to disable this operation (although the loading of these records into
the Audit Trails module can be turned off if you do not want to track record changes). When a
record is modified, a complete list of all fields before and after the change is generated. In the
case of an insertion, only the new value is listed, and for a delete the old value is recorded.

The corresponding xmlauditoptions for the database manager are:
update;updatehistory;insert;delete;tempinsert;tempdelete;tempupdate;
tempmove

search
If search operations are enabled for auditing, audit records containing the texql statement
used to perform the search are generated. By monitoring search audit records, administrators
can determine what fields are being searched and what search terms are used. With this
information it is possible to adjust database indexing to provide faster searching (e.g. by
enabling NULL searching) or to reduce the indexing overhead by removing indexing from
fields that are not searched on a regular basis.

The corresponding xmlauditoptions for the database manager are:
query

display
Using the display operation, audit records are created every time a record is accessed. A
record is accessed when it is viewed by a user, involved in a sort operation or used as part of a
report. The audit record contains an identifier that can be used to link the record displayed with
the search that found the record.

The corresponding xmlauditoptions for the database manager are:
display

login
When a user accesses a module for the first time the database server must login to the
underlying table. The login process must occur before the module can access the data. If the
login operation is enabled, audit records are created each time a user first accesses a module
within a session. An audit record is also created when the user logsout of the module, just
before terminating the session. Using this operation it is possible for administrators to calculate
the time periods that a user has accessed the system.

The corresponding xmlauditoptions for the database manager are:
login;logout;badlogin

Copyright 2007 KE Software Pty. Ltd. 5

all
The all operation may be used to generate audit records for every activity performed on a
given module. Not only are all of the above operations audited, but system activities (e.g.
module reindexing) are also recorded. An administrator can use the all operation to get a
complete picture of all usage of a module. This setting should be used with caution as it can
generate a large number of audit records.

Audit service

The primary purpose of the new auditing facility is to allow administrators and users to monitor
access to records. This monitoring is achieved through the production of audit trail records that
detail what operation occurred on what record, by whom and on what date. The audit service is
charged with the generation of audit trail records from the XML audit records produced by the
database manager.

Audit Trails Module

The Audit Trails module has been added to EMu. The module contains one record per audited
operation. With this module, administrators and users can search audit trail records and produce
reports detailing activities on a given record or operations performed by a given user. In fact
any EMu command may be used to view and manipulate audit trail records. Since auditing
information reflects activities that occurred in the past, all records are read-only.

The Audit Trail module is accessed from the Command Centre:

When invoked, the Audit query tab contains all fields that can be queried in audit trail records:

Copyright 2007 KE Software Pty. Ltd. 6

Most of the search fields are self explanatory; however, some may require explanation:

Identifier: (Query/Display Information)
An Identifier is a unique string generated for "query" audit trail records. Each record returned
by a search and viewed will have an Identifier value set to the same value as the query. By
searching the Identifier field with this value it is possible to obtain a list of all records that were
viewed as the result of a particular search.

Column Name: (Record Information)
This field can be used to obtain a list of all the columns that have changed value. For an
insertion this is all columns that received a value; for an update it is all columns that changed
value; and for a deletion it is all columns that had a value.

TexQL Statement: (Query/Display Information)
The texql query statement used to perform searches can be queried via this field. The value is a
complete texql statement, similar to:
select all from eparties where true and ((((NamFirst contains 'jim'))))

Using a simple parser it is possible to extract information about which fields are searched and
the range of values used for each field.

Old Value/New Value: (Record Information)
A list of all columns changed, followed by the original or new value respectively. The value
returned includes the column name changed, followed by an XML description of the data
structure and values altered. For example:
SummaryData: <atom>Axelrad, Axil</atom>

indicates that the Summary Data field was changed and the value is Axelrad, Axil. The
XML description allows the structure of the data to be determined for reporting. When
performing a search on these fields it is necessary to enclose the search terms within single

Copyright 2007 KE Software Pty. Ltd. 7

quotes so that they will appear in the same line. For example, to find all audit trail records
where the Summary Data was changed to include Axil, enter:
'SummaryData Axil'

as the search term.

When audit trail records are retrieved they can be viewed using any of the standard display
modes in EMu (List, Detail). A Summary tab has been added that presents the audit trail record
as a single page display:

This view consists of two sections. The Audit section contains information that is common to
all audit trail records. The following section contains operation specific information. In this
example the query performed and the number of matching records.

If an audit trail record is for an update operation, this view will contain the new and old values
so that users can determine what fields were modified:

Copyright 2007 KE Software Pty. Ltd. 8

The old values are shown below the new values and in purple. It is possible to configure the
colours used to display data using the Options dialogue box (Tools>Options) and selecting the
Colours tab. Audit colour is used for current data, and Audit Previous is used for previous
values:

When displaying fields that contain lists of values the differences can be displayed either
interleaved, that is each line shows the old and new value, or consecutively, that is all the new
values are shown first, followed by all the old values. The Interleave Field Changes menu
option (View>Interleave Field Changes) determines which view is used:

Copyright 2007 KE Software Pty. Ltd. 9

While viewing audit trail records it is possible to view the record to which the audit trail applies:

• If viewing the Summary tab, the IRN value will appear as a clickable link (the number
will be underlined). If clicked, the audited record will display.

• If viewing the Audit tab, the View Attachments button next to the IRN value may be
used. While on the IRN field, the View Attached menu command (Edit>View
Attached>Current Record and Edit>View Attached>Selected Records) may be
invoked. In the case of the Selected Records option, only records that are in the same
module as the current record will be displayed.

A set of standard reports is available for producing listings and detailed views of audit trail
records. An example list report is shown below:

Audit Tab

Every module in EMu has an Audit tab when viewing records in Details view. The tab displays
the complete audit trail history for the current record as stored in the Audit Trails module.
Using the View Attachment button or the View Attached menu command (Edit>View
Attached>Current Record and Edit>View Attached>Selected Records), the full audit trail
record(s) can be viewed in the Audit Trails module. The content of the Audit tab is generated
each time the tab is viewed:

Copyright 2007 KE Software Pty. Ltd. 10

Disabling auditing

The new audit service may generate a large number of audit trail records for very active
systems. In some instances it may not be necessary to generate audit trail records for all
modules.

It is not possible to disable auditing on a module completely using the emuaudit command as
the system will always produce XML audit records for any record changes. These records are
used by other auditing services (e.g. sync service) to monitor system changes.

To disable the loading of audit trails records for a module add:
AUDIT=no

to the emuoptions file under the database directory (data/tablename). It may be necessary to
create the emuoptions file if it does not exist; thus to disable auditing of the Parties module add:
AUDIT=no

to data/eparties/emuoptions. When an entry is added to the emuoptions file, the EMu client
must be restarted before it will take effect.

It is also possible to disable the loading of all audit trail records by removing the Audit Trails
table (eaudit). If EMu cannot find the eaudit table, the audit service will ignore any XML audit
records generated.

Archiver service

Another service that uses the new auditing facility is the archiver. All XML audit records
generated are passed to the archiver service to determine whether a copy should be placed in a
file for archiving. The service allows administrators to keep a backup copy of all XML audit
records (which can be used for reference or supplying to other software as input).

Copyright 2007 KE Software Pty. Ltd. 11

To enable the archiver service the directory logs/audit must exist on the EMu server. By
default, the directory does not exist when EMu is installed and must be created by an
administrator. When the directory is first created the auditing sub-system must be restarted via:
emuload stop audit
emuload start audit

All XML audit records for a day are placed in a single file under the logs/audit directory. The
file name is in the form yyyy-mm-dd. Once all the entries for a day have been added, the file is
compressed (with gzip) and renamed to yyyy-mm-dd.gz. To view a compressed archive file
use:
gzcat yyyy-mm-dd.gz

The archiver can be disabled by either renaming the logs/audit directory or removing it. Once
disabled the auditing sub-system must be restarted via:
emuload stop audit
emuload start audit

Sync service

The sync service is used to ensure that all records that extract data from another record are up
to date. For example, a Catalogue record may copy the Full Name field from the Parties module
into the Creator's Name field for a work of art. The copy is used to allow high speed searching
on the Creator's Name field in the Catalogue. If the record in the Parties module is changed so
that the value of the Full Name field changes, all Catalogue records that copy in the Full Name
value must be updated to the new value.

A table is maintained automatically in etc/syncmap and is used by the sync service to
determine which fields need to be updated when a field is modified. In the example above the
map would contain:
eparties NamFullName ecatalogue CreCreatorRef_tab

This indicates that when the NamFullName field in the eparties table is changed, the
CreCreatorRef_tab field in ecatalogue table is checked to see if the value needs to be updated.

The sync service is implemented as a background load and is controlled by the emuload
command. In the day to day working of the system the sync service must be running to ensure
that records are always up to date.

Adding a new service

The new auditing system is a general purpose facility designed to provide a stream of XML
audit records to registered services. These services examine the XML audit records and take
actions appropriate for the service they provide. In the case of the archiver service the XML
audit record is copied to a file; the audit service creates audit trail records for loading into the
Audit Trail module (eaudit); and the sync service looks for data that has changed and updates
records that copy the modified data.

It is also possible to add client specific services by creating a new handler and installing it in
the appropriate location on the EMu server. Client specific handlers are placed in the
local/etc/audit directory in a file with a .pl extension. The name of the file should reflect the
service and the code must be written using perl.

The service file must contain a function called Audit(), which is used to process the XML
audit record. The function does not return a value. A sample stub is provided below:
#!/usr/bin/perl

Copyright 2007 KE Software Pty. Ltd. 12

Archive the audit XML into a log file.

sub
Audit
{
 my $tree = shift;
 my $columns = shift;
 my $xml = shift;

 #
 # Process the XML audit record for this service
 #
}

The Audit() function receives three arguments. The first is a simple tree representation of the
XML audit record. A sample listing of the tree for a changed Parties module record looks like:
$tree => {
 'date' => {
 'content' => '2007-11-19 12:47:50'
 },
 'prog' => {
 'content' => 'texload'
 },
 'user' => {
 'content' => 'emu'
 },
 'data' => {
 'atom' => [
 {
 'name' => 'PlaRbgFeaturesHazards',
 'new' => {}
 },
 {
 'name' => 'irn',
 'new' => {
 'content' => '252'
 }
 },
 {
 'name' => 'SummaryData',
 'new' => {
 'content' =>
'04/10/2007 Excellent (MARSHALL, Dr Charles John)',
 'computed' => 'yes'
 },
 'old' => {
 'content' =>
'04/10/2007 Excellent (MARSHALL, Mr Charles James)'
 },
 'modified' => 'yes'
 },
 {
 'name' => 'ConCatalogueRef',
 'new' => {
 'content' => '1000029'
 }
 },
 . . .
]
 },

Copyright 2007 KE Software Pty. Ltd. 13

 'op' => {
 'content' => 'update'
 },
 'key' => {
 'atom' => {
 'content' => '252'
 }
 },
 'module' => {
 'content' => 'econdition'
 }
 };

The second argument is a reference to a hash of the column names within the data section of
the XML audit record. This can be used to look up the value of a column directly. A sample
listing looks like:
$columns => {
 'SummaryData' => {
 'name' => 'SummaryData',
 'new' => {
 'content' => '04/10/2007
Excellent (MARSHALL, Dr Charles James)',
 'computed' => 'yes'
 },
 'old' => {
 'content' => '04/10/2007
Excellent (MARSHALL, Dr Charles John)'
 },
 'modified' => 'yes'
 },
 'NamFirst' => {
 'name' => 'NamFirst',
 'new' => {
 'content' => 'Charles'
 }
 },
 'NamMiddle' => {
 'name' => 'NamMiddle',
 'new' => {
 'content' => 'James'
 },
 'old' => {
 'content' => 'John'
 },
 'modified' => 'yes'
 },
 . . .
 };

The third argument is a reference to a list containing the complete XML audit record in text
form, with one line per list index:
$xml => [
 '<audit>
',
 ' <prog>texload</prog>
',
 ' <module>econdition</module>
',
 ' <key>
',

Copyright 2007 KE Software Pty. Ltd. 14

 ' <atom>252</atom>
',
 ' </key>
',
 ' <date>2007-11-19 13:23:15</date>
',
 ' <user>emu</user>
',
 ' <op>update</op>
',
 ' <data>
',
',
 ' <atom name="SummaryData" modified="yes">
',
 ' <old>04/10/2007 Excellent (MARSHALL,
Dr Charles James)</old>
',
 ' <new computed="yes">04/10/2007
Excellent (MARSHALL, Dr Charles John)</new>
',
 ' </atom>
',
 ' <atom name="NamMiddle" modified="yes">
',
 ' <old>James</old>
',
 ' <new>John</new>
',
 ' </atom>
 . . .
 ' </data>
',
 '</audit>
'
];

The Audit() function must not change any of the supplied arguments as they are not local
copies (required for efficiency reasons). Also the handler itself must be reasonably efficient as
it is part of a chain of services that is called for every XML audit record generated. The
standard services distributed with EMu can be found in etc/audit.

Overriding filters

Many of the standard services (e.g. audit and archiver) separate the code used to perform the
service (the handler) from the code used to determine whether the service should be used at all
(the filter). The reason for this separation is that administrators may want to override the filter,
allowing them to set new criteria for when a service should process a record.

For example, an administrator may only be interested in creating audit trail records for records
that have been changed (that is insertions, updates and deletions), however they would not only
like to archive changes but searches as well.

In order to provide the correct XML audit records both the change and search audit levels
are required. To generate the correct XML audit records from the database manager, run:
emuaudit -o change,search
eaccessionlots search,change
ebibliography search,change
ecatalogue search,change
econdition search,change

Copyright 2007 KE Software Pty. Ltd. 15

econservation search,change
edocuments search,change
eevents search,change
efieldhelp search,change
egroups search,change
einsurance search,change
einternal search,change
eloans search,change
elocations search,change
emovements search,change
emultimedia search,change
enarratives search,change
eparties search,change
eregistry search,change
erights search,change
etemplate search,change
ethesaurus search,change
evaluations search,change

The next step is to write a LocalFilter() that determines whether the XML audit record
should be processed. In this case we need to check whether the audit operation was "insert",
"update" or "delete".

The LocalFilter() function must exist in local/etc/audit/filters/audit.pl as it is overriding
the standard filter found in etc/audit/filters/audit.pl. If a standard filter does not exist, a local
filter can still be defined by adding a file to local/etc/audit/filters where the filename is the
same name as the audit service file.

The code below could be used to implement the local filter:
#!/usr/bin/perl

use strict;
use warnings 'all';

Get definition for the "standard" filter function.

require "$ENV{EMUPATH}/etc/audit/filters/audit.pl";

Only allow insertions, updates and deletions to be audited.

sub
LocalFilter
{
 my $tree = shift;
 my $columns = shift;
 my $xml = shift;
 my $operation;

 #
 # Check whether the "standard" filter will allow the record
 # to be processed.
 #
 return(1) if (Filter($tree, $columns, $xml) != 0);

 #
 # Check for "insert", "update" and "delete".
 #
 $operation = $tree->{op}->{content};
 return($operation ne "insert" && $operation ne "update" &&

Copyright 2007 KE Software Pty. Ltd. 16

 $operation ne "delete");
}

1;

Notice that the standard filter Filter() should be called from within your LocalFilter() if
you want standard filtering to apply. The arguments to the Filter() and LocalFilter()
functions are the same as for the Audit() function defined for an audit service.

Copyright 2007 KE Software Pty. Ltd. 17

	Auditing Facility
	Overview
	The Auditing system
	database manager
	audit load
	auditserver
	filter
	handler

	emuaudit
	change
	search
	display
	login
	all

	Audit service
	Audit Trails Module
	Identifier: (Query/Display Information)
	Column Name: (Record Information)
	TexQL Statement: (Query/Display Information)
	Old Value/New Value: (Record Information)

	Audit Tab
	Disabling auditing
	Archiver service
	Sync service
	Adding a new service
	Overriding filters

