

www.kesoftware.com
© 2011 KE Software. All rights reserved.

IMu Documentation

Using KE IMu's PHP API
Document Version 1

EMu Version 4.0
IMu Version 1.0.03

Contents

S E C T I O N 1 Introduction 1

S E C T I O N 2 Using IMu’s PHP library 3
Test page 4
Exceptions 5

S E C T I O N 3 Connecting to an IMu server 7
Handlers 8

S E C T I O N 4 Accessing an EMu module 9
Searching a module 10

findKey 11
findKeys 11
findTerms 12

Examples 13
findWhere 15
Number of matches 15

Getting information from matching records 16
$flag and $offset 17
$count 17
$columns 18
Return values 19

Attachments 22
Reverse attachments 23
Rename a column 24
Grouping a set of nested table columns 25
Column sets 28

A simple example 29
Sorting 31

$keys 31
$flags 32
Return value 35
Example 36

S E C T I O N 5 Multimedia 39

S E C T I O N 6 Maintaining state 45
Example 48

S E C T I O N 7 Exceptions 53

S E C T I O N 8 Reference 55
Class IMuHandler 55

Constructor 55
Properties 56
Methods 57

Class IMu 58
Class constants 58
Class properties 58

Class IMuException 59
Constructor 59
Properties 59
Methods 60

Class IMuModule 61
Constructor 61
Properties 61
Methods 62

Class IMuModuleFetchResult 68
Properties 68

Class IMuSession 69
Class Properties 69
Constructor 69
Properties 70
Methods 71

Index 73

Introduction

Using KE IMu's PHP API

S E C T I O N 1

Introduction

IMu, or Internet Museum, broadly describes KE Software's strategy and toolset for
distributing data held within EMu via the Internet. Distribution includes the publishing of
content on the web, but goes far beyond this to cover sharing of data via the Internet
(portals, online partnerships, etc.); publishing content to new mobile technologies; iPod
guided tours, etc.

To facilitate these various Internet projects, KE has produced a set of documents that
describe how to implement and customise IMu components, including:

• APIs (for Developers)
• Web pages for publishing EMu
• Tools, including:

• iPhone / mobile interfaces
• iPod guided tours

This document describes use of the IMu PHP API.

1

Using IMu’s PHP library

Using KE IMu's PHP API

S E C T I O N 2

Using IMu’s PHP library

The IMu PHP API source code bundle for version 1.0.03 (or higher) is required to
develop an IMu-based application. This bundle contains all the classes that make up
the IMu PHP API.

For building PHP web-based applications (the most common use of the IMu PHP API),
the source code bundle must be extracted on the web server machine and accessible
by the web server.

In order to use the IMu PHP API, include IMu.php in the PHP code.

For example, if the IMu API source code is installed in the relative directory:

../imu-api

the following line would be added to the PHP code:
require_once '../imu-api/IMu.php';

IMu.php defines an IMu class. This class includes static members which contain
information about the IMu installation. The class includes:

• IMu::$lib - the path to the IMu PHP API files.
• IMu::VERSION - the version of this IMu release.

The $lib member should also be used to simplify the requiring of other IMu library
files.

For example:
require_once IMu::$lib . '/Session.php';

3

Using IMu’s PHP library

4 Using KE IMu's PHP API

Test page

Building this very simple IMu-based web page is a good test of whether the
development environment has been set up properly for using IMu:

<?php
require_once '../imu-api/IMu.php';

printf('IMu version %s', IMu::VERSION);
?>

Using IMu’s PHP library

Using KE IMu's PHP API

Exceptions

Many of the methods in the IMu library objects throw exceptions when an error occurs.
For this reason, code that uses IMu library objects should be surrounded with a
try/catch block.

The following code is a basic template for writing PHP programs which use the IMu
library:

require_once '…/IMu.php';
…
try
{
 // Create and use IMu objects
 …
}
catch (Exception $e)
{
 // Handle or report error
 …
}

Most IMu exceptions throw an IMuException object. IMuException is a subclass of
the standard PHP Exception. In many cases your code can simply catch the standard
Exception (as in this template). If more information is required about the exact
IMuException thrown, see Exceptions (page 53).

 Many of the examples that follow assume that code fragments have been
surrounded with code structured in this way.

5

Connecting to an IMu server

Using KE IMu's PHP API

S E C T I O N 3

Connecting to an IMu server

Most IMu based programs begin by creating a connection to an IMu server.
Connections to a server are created and managed using IMu’s IMuSession class.
Before connecting, both the name of the host and the port number to connect on must
be specified. This can be done in one of three ways.

The simplest way to create a connection to an IMu server is to pass the host name and
port number to the IMuSession constructor and then call the connect method. For
example:

require_once '…/IMu.php';
require_once IMu::$lib . '/Session.php';
…
$mySession = new IMuSession('server.com', 12345);
$mySession->connect();

Alternatively, pass no values to the constructor and then set the $host and $port
properties (either by assigning to them directly or by using setHost and setPort)
before calling connect:

require_once '…/IMu.php';
require_once IMu::$lib . '/Session.php';
…
$mySession = new IMuSession();

$mySession->host = 'server.com';
// or, equivalently
// $mySession->setHost("server.com");

$mySession->port = 12345;
// or, equivalently
//$mySession->setPort(12345);

$mySession->connect();

If either the host or port is not set, the IMuSession class default value will be used.
These defaults can be overridden by setting the class (static) properties $defaultHost
and $defaultPort:

require_once '…/IMu.php';
require_once IMu::$lib . '/Session.php';
…
IMuSession::setDefaultHost('server.com');
IMuSession::setDefaultPort(12345);
$mySession = new IMuSession();
$mySession->connect();

This technique is useful when planning to create several connections to the same
server or when wanting to get a handler object (page 8) to create the connection
automatically.

7

Connecting to an IMu server

8 Using KE IMu's PHP API

Handlers

Once a connection to an IMu server has been established, it is possible to create
handler objects to submit requests to the server and receive responses.

 When a handler object is created, a corresponding object is created by the
IMu server to service the handler's requests.

All handlers are subclasses of IMu's IMuHandler class.

 You do not typically create a IMuHandler object directly but instead use a
subclass.

In this document we examine the most frequently used handler, IMuModule, which
allows you to find and retrieve records from a single EMu module.

Accessing an EMu module

Using KE IMu's PHP API

S E C T I O N 4

Accessing an EMu module

A program accesses an EMu module (or table, the terms are used interchangeably)
using an IMuModule class. The name of the table to be accessed is passed to the
IMuModule constructor. For example:

require_once IMu::$lib . '/Module.php';
…
$parties = new IMuModule('eparties', $mySession);

This code assumes that an IMuSession object called $mySession has already been
created. If an IMuSession object is not passed to the IMuModule constructor, a
session will be created automatically using the $defaultHost and $defaultPort
class properties. See Connecting to an IMu Server (page 7) for details.

Once an IMuModule object has been created, it can be used to search the specified
module and retrieve records.

9

Accessing an EMu module

10 Using KE IMu's PHP API

Searching a module

One of the following methods can be used to search for records within a module:

• findKey
• findKeys
• findTerms
• findWhere

Accessing an EMu module

Using KE IMu's PHP API

11

findKey

The findKey method searches for a single record by its key.

For example, the following code searches for a record with a key of 42 in the Parties
module:

require_once IMu::$lib . '/Module.php';
…
$parties = new IMuModule('eparties', $mySession);
$hits = $parties->findKey(42);

The method returns the number of matches found, which is either 1 if the record exists
or 0 if it does not.

findKeys

The findKeys method searches for a set of key values. The keys are passed as an
array:

$parties = new IMuModule("eparties", $mySession);
$keys = array(52, 42, 17);
$hits = $parties->findKeys(keys);

The method returns the number of records found.

Accessing an EMu module

12 Using KE IMu's PHP API

findTerms

The findTerms method is the most flexible and powerful way to search for records
within a module. It can be used to run simple single term queries or complex multi-term
searches.

The terms are specified using an array. Each term is itself an array comprising two or
three elements:

1. The first element contains the name of the column or an alias in the module to be
searched.

2. The second element contains the value for which to search.
3. A comparison operator can be included as a third element (see example 3

below).
The operator specifies how the value supplied as the second argument of the
array should be matched. In most cases, operators are the same as those used in
TexQL (see KE's TexQL documentation for details).
Specifying an operator is optional. If none is supplied, the operator defaults to
matches. This is not a real TexQL operator, but is translated by the search engine
as the most "natural" operator for the type of column being searched. For
example, with text columns matches is translated as "contains" and with integer
columns it is translated as "=".

 Unless it is really necessary to specify an operator, consider using the
matches operator, or better still supplying no operator at all as this allows
the server to determine the best type of search.

 The first element of each term may be the name of a search alias. A search
alias associates a name with one or more actual columns. Aliases are
created using the addSearchAlias or addSearchAliases methods.

Accessing an EMu module

Using KE IMu's PHP API

13

Examples

1. To search for the name Smith in the Last Name field of the Parties module, the
following term can be used:

$search = array('NamLast', 'Smith');

2. Specifying search terms for other types of columns is straightforward. For
example, to search for records inserted on April 4, 2011

$search = array('AdmDateInserted', 'Apr 4 2011');

3. To search for records inserted before April 4, 2011, it is necessary to add an
operator:

$search = array('AdmDateInserted', 'Apr 4 2011', '<');

4. To specify more than one search term create a Boolean AND or OR term. This
means that to find records which match both a First Name containing John and
a Last Name containing Smith a terms array can be created as follows:

$search = array('and', array(
 array('NamFirst', 'John'),
 array('NamLast', 'Smith')
));

or, equivalently,
$terms = array();
$terms[] = array('NamFirst', 'John');
$terms[] = array('NamLast', 'Smith');
$search = array('and', $terms);

5. A set of terms where the relationship between the terms is a Boolean OR can be
created just as simply. This means that:

$search = array('or', array(
 array('NamFirst', 'John'),
 array('NamLast', 'Smith')
));

or, equivalently,
$terms = array();
$terms[] = array('NamFirst', 'John');
$terms[] = array('NamLast', 'Smith');
$search = array('or', $terms);

specifies a search for records where either the First Name contains John or the
Last Name contains Smith.

6. Combinations of AND and OR search terms can be created simply by creating a
nested array. To restrict the search for a First Name of John and a Last Name
of Smith to matching records inserted before April 4, 2011 or on May 1, 2011,
specify:

$search = array('and', array(
 array('NamFirst', 'John'),
 array('NamLast', 'Smith'),
 array('or', array(
 array('AdmDateInserted', 'Apr 4 2011', '<'),
 array('AdmDateInserted', 'Mar 1 2011')
))
));

Accessing an EMu module

14 Using KE IMu's PHP API

7. To run a search, pass the terms array to the findTerms method:
$parties = new IMuModule('eparties', $mySession);
$search = array('NamLast', 'Smith');
$hits = $parties->findTerms(myTerms);

As with other find methods, the return value contains the estimated number of
matches.

8. To use a search alias, call the addSearchAlias method to associate the alias
with one or more real column names before calling findTerms. Suppose we
want to allow a user to search the Catalogue module for keywords. Our
definition of a keywords search is to search the SummaryData, CatSubjects_tab
and NotNotes columns. We could do this by building an OR search:

$keyword = …;

$terms = array('or',
 array('SummaryData', $keyword),
 array('CatSubjects_tab', $keyword),
 array('NotNotes', $keyword));

 Another way of doing this is to register the association between the name
keywords and the three columns we are interested in and then pass the name
keywords as the column to be searched:

$keyword = …;
…
$catalogue = new IMuModule('ecatalogue', $mySession);
$columns = array
(
 'SummaryData',
 'CatSubjects_tab',
 'NotNotes'
);
$catalogue->addSearchAlias('keywords', $columns);
…
$search = array('keywords', $keyword);
$catalogue->findTerms($search);

 An alternative to passing the columns as an array of strings is to pass a single
string, with the column names separated by semi-colons:

$keyword = …;
…
$catalogue = new IMuModule('ecatalogue', $mySession);
$columns = 'SummaryData;CatSubjects_tab;NotNotes';
$catalogue->addSearchAlias('keywords', $columns);
…
$search = array('keywords', $keyword);
$catalogue->findTerms($search);

The advantage of using a search alias is that once the alias is registered, a
simple name can be used to specify a more complex OR search.

9. To add more than one alias at a time, use an associative array of names and
columns and call the addSearchAliases method:

$aliases = array(
 'keywords' =>'SummaryData;CatSubjects_tab;'NotNotes',
 'title' => array('SummaryData', 'TitMainTitle'));
$module->addSearchAliases($aliases);

Accessing an EMu module

Using KE IMu's PHP API

15

findWhere

With the findWhere method it is possible to submit a complete TexQL where clause.
$parties = new IMuModule('eparties', $mySession);
$where = "NamLast contains 'Smith'";
$hits = $parties->findWhere($where);

Although this method provides complete control over exactly how a search is run, it is
generally better to use findTerms to submit a search rather than building a where
clause. There are (at least) two reasons to prefer findTerms over findWhere:

1. Building the where clause requires the code to have detailed knowledge of the
data type and structure of each column. The findTerms method leaves this task
to the server. For example, specifying the term to search for a particular value in
a nested table is straightforward. To find Parties records where the Roles nested
table contains Artist, findTerms simply requires:
array('NamRoles_tab', 'Artist')
On the other hand, the equivalent TexQL clause is:
exists(NamRoles_tab where NamRoles contains 'Artist')
The TexQL for double nested tables is even more complex.

2. More importantly, findTerms is more secure.
With findTerms a set of terms is submitted to the server which then builds the
TexQL where clause. This makes it much easier for the server to check for terms
which may contain SQL-injection style attacks and to avoid them.
If your code builds a where clause from user entered data so it can be run using
findWhere, it is much more difficult, if not impossible, for the server to check and
avoid SQL-injection. The responsibility for checking for SQL-injection becomes
yours.

Number of matches

All the find methods return the number of matches found by the search. For findKey
and findKeys this number is always the exact number of matches found. The number
returned by findTerms and findWhere is best thought of as an estimate. This estimate
is almost always correct but because of the nature of the indexing used by the server's
data engine (Texpress) the number can sometimes be an over-estimate of the real
number of matches. This is similar to the estimated number of hits returned by a
Google search.

Accessing an EMu module

16 Using KE IMu's PHP API

Getting information from matching
records

IMuModule's fetch method is used to get information from the matching records once
the search of a module has been run. The server maintains the set of matching records
in a list and fetch can be used to retrieve any information from any contiguous block of
records in the list.

The simplest form of the fetch method takes four arguments:

• $flag
• $offset
• $count
• $columns

Accessing an EMu module

Using KE IMu's PHP API

17

$flag and $offset

The $flag and $offset arguments define the starting position of the block records to
be fetched. The $flag argument is a string and must be one of:

• 'start'
• 'current'
• 'end'

The 'start' and 'end' flags refer to the first record and the last record in the
matching set. The 'current' flag refers to the position of the last record fetched by the
previous call to fetch. If fetch has not been called, 'current' refers to the first
record in the matching set.

The $offset argument is an integer. It adjusts the starting position relative to the
$flag. A positive value for $offset specifies a start after the position specified by
$flag and a negative value specifies a start before the position specified by $flag.

For example, calling fetch with a $flag of 'start' and $offset of 3 will cause
fetch to return records starting from the fourth record in the matching set. Specifying a
$flag of 'end' and a $offset of -8 will cause fetch to return records starting from
the ninth last record in the matching set.

To retrieve the next record after the last returned by the previous fetch, you would
pass a $flag of 'current' and a $offset of 1.

$count

The $count argument specifies the maximum number of records to be retrieved.

Passing a $count value of 0 is valid. This causes fetch to change the current record
without actually retrieving any data.

Using a negative value of $count is also valid. This causes fetch to return all the
records in the matching set from the starting position (specified by $flag and $offset).

Accessing an EMu module

18 Using KE IMu's PHP API

$columns

The $columns argument is used to specify which columns should be included in the
returned records. The argument can be either a simple string or an array of strings. In
its simplest form each string contains a single column name, or several column names
separated by semi-colons or commas.

For example, to retrieve the information for both the NamFirst and NamLast columns,
you would do one of:

$parties = new IMuModule('eparties', $mySession);
$columns = 'NamFirst;NamLast';
$parties->fetch('start', 0, 1, $columns);

-OR-
$columns = array
(
 'NamFirst',
 'NamLast'
);
$parties->fetch('start', 0, 1, $columns);

Accessing an EMu module

Using KE IMu's PHP API

19

Return values

The fetch method returns records requested in an IMuModuleFetchResult object.
This object contains three members:

• count (an integer)
• hits (an integer)
• rows (an array)

The count property is the number of records returned by the fetch request.

The hits property is the estimated number of matches in the result set. This number is
returned for each fetch because the estimate can decrease as records in the result
set are processed by the fetch method.

The rows property is an array containing the set of records requested. Each element of
the rows array is itself an associative array. Each associative array contains entries for
each column requested.

The following example shows a simple search of the EMu Parties module using
findTerms with fetch used to retrieve a set of records:

require_once '…/IMu.php';
require_once IMu::$lib . '/Session.php';
require_once IMu::$lib . '/Module.php';
…
try
{
 $mySession = new IMuSession('server.com', 12345);

 $parties = new IMuModule('eparties', $mySession);

 // Find all party records where Last Name contains 'smith'
 $search = array('NamLast', 'Smith');
 $hits = $parties->findTerms($search);

 // We want to fetch the irn, NamFirst and NamLast
 // columns for each record.
 $columns = array
 (
 'irn',
 'NamFirst',
 'NamLast'
);

 // Fetch the first three records (at most) from the start
 // of the result set.
 $result = $parties->fetch('start', 0, 3, $columns);

 print_r($result);
}
catch (Exception $e)
{
 …
}

Accessing an EMu module

20 Using KE IMu's PHP API

The output of this code will be similar to:
IMuModuleFetchResult Object
(
 [count] => 3
 [hits] => 12
 [rows] => Array
 (
 [0] => Array
 (
 [rownum] => 1
 [irn] => 722
 [NamFirst] => Chris
 [NamLast] => SMITH
)
 [1] => Array
 (
 [rownum] => 2
 [irn] => 723
 [NamFirst] => Brad
 [NamLast] => Smith
)
 [2] => Array
 (
 [rownum] => 3
 [irn] => 724
 [NamFirst] => Sylvia
 [NamLast] => Smith
)
)
)

Notice that data for each row includes the irn, NamFirst and NamLast elements,
which correspond to the columns requested. Also notice that a rownum element is
included. This element contains the number of the record within the result set (starting
from 1) and is always included in the retrieved records.

Nested tables are returned as arrays of strings. For example, if a $columns argument
of:

'NamLast;NamFirst;NamRoles_tab'

is passed, the object returned will have a structure similar to:

Accessing an EMu module

Using KE IMu's PHP API

21

IMuModuleFetchResult Object
(
 [hits] => 1
 [rows] => Array
 (
 [0] => Array
 (
 [NamLast] => Ebb
 [rownum] => 1
 [NamRoles_tab] => Array
 (
 [0] => Lyricist
 [1] => Pianist
)
 [NamFirst] => Fred
)
)
)

(Displayed using print_r)

Accessing an EMu module

22 Using KE IMu's PHP API

Attachments

The set of columns requested can be more than simple column names. Columns from
modules which the current record attaches to can also be requested. For example,
suppose that the Catalogue module documents the creator of an object as an
attachment (to a record in the Parties module) in a column called CatCreatorRef. If the
Catalogue module is searched, it is possible to get the creator's last name for each
Catalogue record in the result set as follows:

'CatCreatorRef.NamLast'

This technique can be extended to get information for more than one column:
'CatCreatorRef.(NamTitle;NamLast;NamFirst)'

The values are returned in a nested associative array:
IMuModuleFetchResult Object
(
 [count] => 1
 [hits] => 1
 [rows] => Array
 (
 [0] => Array
 (
 [rownum] => 1
 [irn] => 5
 [CatCreatorRef] => Array
 (
 [NamLast] => Mueck
 [NamTitle] => Mr
 [NamFirst] => Ron
)
)
)
)

 Users of the older EMuWeb system should note that it is possible to use an
"arrow" (i.e. a hyphen followed by a greater-than sign) in place of the dot,
e.g.:
"CatCreatorRef->NamLast"
Also note that it is not necessary to include the table name in the reference.
For example:
"CatCreatorRef->eparties->NamLast"
is not necessary. The IMu server will accept this syntax and silently ignore
the table name.

Accessing an EMu module

Using KE IMu's PHP API

23

Reverse attachments

In addition to standard attachment columns, it is possible to request information from
so-called reverse attachments. A reverse attachment refers to one or more records
which attach to the current record.

For example, to retrieve information from a set of Catalogue records which attach to the
current Parties record via the Catalogue's CatCreatorRef column, specify:

'<ecatalogue:CatCreatorRef>.(irn,TitMainTitle)'

The following code fragment retrieves Parties IRN 53 and displays the CatCreatorRef
reverse attachments:

$parties = new IMuModule('eparties', $mySession);
$hits = $parties->findKey(53);

$columns = array
(
 'irn',
 'NamFirst',
 'NamLast',
 '<ecatalogue:CatCreatorRef>.(irn,TitMainTitle)'
);

$result = $parties->fetch('start', 0, 1, $columns);
print_r($result);

The reverse attachments are returned as an associative array:
IMuModuleFetchResult Object
(
 [count] => 1
 [hits] => 1
 [rows] => Array
 (
 [0] => Array
 (
 [ecatalogue:CatCreatorRef] => Array
 (
 [0] => Array
 (
 [irn] => 5
 [TitMainTitle] => In Bed
)
 [1] => Array
 (
 [irn] => 50
 [TitMainTitle] => Man in Blankets
)
)
 [irn] => 53
 [NamLast] => Mueck
 [rownum] => 1
 [NamFirst] => Ron
)
)
)

Accessing an EMu module

24 Using KE IMu's PHP API

Rename a column

It is possible to rename any column when it is returned by adding the new name in front
of the real column being requested, followed by an equals sign.

For example, to request data from the NamLast column but rename it as last_name,
specify:

'last_name=NamLast'

The returned Map will contain an element called last_name rather than NamLast.

This is particularly useful for complicated reverse attachment names:
'objects=<ecatalogue:CatCreatorRef>.(SummaryData)'

Accessing an EMu module

Using KE IMu's PHP API

25

Grouping a set of nested table columns

A set of nested table columns can be grouped. Grouping allows the association
between the columns to be reflected in the structure of the data returned. Consider the
Contributors grid on the Details tab of the Narratives module, which contains two
columns:

• NarContributorRef_tab
which contains a set of attachments to records in the Parties module.

• NarContributorRole_tab
which contains the roles for the corresponding contributors.

Each column can be retrieved separately as follows:
$narratives = new IMuModule('enarratives', $mySession);

$narratives->findKey(2);

$columns = array
(
 'irn',
 'NarTitle',
 'NarContributorRef_tab.SummaryData',
 'NarContributorRole_tab'
);

$result = $narratives->fetch('start', 0, 1, $columns);
print_r($result);

Accessing an EMu module

26 Using KE IMu's PHP API

This produces output such as:
IMuModuleFetchResult Object
(
 [count] => 1
 [hits] => 1
 [rows] => Array
 (
 [0] => Array
 (
 [rownum] => 1
 [irn] => 2
 [NarTitle] => Portrait of William Wilberforce
 [NarContributorRole_tab] => Array
 (
 [0] => Artist
 [1] => Author
)
 [NarContributorRef_tab] => Array
 (
 [0] => Array
 (
 [SummaryData] => Rising, John
)
 [1] => Array
 (
 [SummaryData] => Graham, Beverley
)
)
)
)
)

Although this works fine, the relationship between the contributor and his or her role is
unclear. Grouping can make the relationship far clearer.

To group the columns, surround them with square brackets:
'[NarContributorRef_tab.SummaryData,NarContributorRole_tab]'

Accessing an EMu module

Using KE IMu's PHP API

27

With this single change, output of the previous code fragment looks like this:
IMuModuleFetchResult Object
(
 [count] => 1
 [hits] => 1
 [rows] => Array
 (
 [0] => Array
 (
 [rownum] => 1
 [irn] => 2
 [NarTitle] => Portrait of William Wilberforce
 [group1] => Array
 (
 [0] => Array
 (
 [NarContributorRole_tab] => Artist
 [NarContributorRef_tab] => Array
 (
 [SummaryData] => Rising, John
)
)
 [1] => Array
 (
 [NarContributorRole_tab] => Author
 [NarContributorRef_tab] => Array
 (
 [SummaryData] => Graham, Beverley
)
)
)
)
)
)

By default, the group is given a name of group1, group2 and so on, which can be
changed easily enough:

'contributors=[NarContributorRef_tab.SummaryData,
 NarContributorRole_tab]'

Accessing an EMu module

28 Using KE IMu's PHP API

Column sets

Every time fetch is called and a set of columns to retrieve is passed, the IMu server
must parse these columns and check them against the EMu schema. For complex
column sets, particularly those involving several references or reverse references, this
can take time.

If fetch will be called several times with the same set of columns, it is a good idea to
register the set of columns once and then simply pass the name of the registered set
each time fetch is called.

IMuModule’s addFetchSet method is used to register a set of columns. This method
takes two arguments:

• The name of the column set.
• The set of columns to be associated with that name.

For example:
$columns = array
(
 'irn',
 'NamFirst',
 'NamLast'
);
$parties->addFetchSet('PersonDetails', $columns);

This registers the set of columns with the IMu server and gives it the name
PersonDetails. This name can then be passed to any call to fetch and the same set
of columns will be returned:

$parties->fetch('start', 0, 5, 'PersonDetails');

More than one set can be registered at once using addFetchSets. Simply build an
associative array containing each set:

$sets = array(
 'PersonDetails' => array('irn', 'NamFirst', 'NamLast'),
 'OrganisationDetails' => array('irn', 'NamOrganisation'));
$module->addFetchSets($sets);

Using column sets is very useful when maintaining state (page 45).

Accessing an EMu module

Using KE IMu's PHP API

29

A simple example

In this example we build a simple PHP based web page to search the Parties module
by last name and display the full set of results.

First build the search page, search.html, which is a plain HTML form:
<head>
 <title>Party Search</title>
</head>
<body>
 <form action="results.php">
 <p>Enter a last name to search for:</p>
 <input type="text" name="name"/>
 <input type="submit" value="Search"/>
 </form>
</body>

Next build the results page, results.php, which runs the search and displays the
results:

<?php
require_once '…/IMu.php';

require_once IMu::$lib . '/session.php';
require_once IMu::$lib . '/module.php';

try
{
 $session = new IMuSession('localhost', 45678);
 $module = new IMuModule('eparties', $session);

 /* Build search term and run search.
 ** Search term is passed from search.html using GET
 */
 $text = $_GET['name'];
 $term = array('NamLast', $text);
 $hits = $module->findTerms($term);

 /* Build list of columns to fetch */
 $columns = array
 (
 'NamFirst',
 'NamLast'
);

 /* Fetch all the matches in one go by passing count < 0 */
 $results = $module->fetch('start', 0, -1, $columns);

 /* Build the results page */
?>
<body>
<p>Number of matches: <?php echo $results->hits ?></p>
<table>
<?php
 /* Display each match in a separate row in a table */
 foreach ($results->rows as $row)
 {

Accessing an EMu module

30 Using KE IMu's PHP API

?>
 <tr>
 <td><?php echo $row['rownum'] ?></td>
 <td><?php echo $row['NamFirst'], ' ', $row['NamLast'] ?></td>
 </tr>
<?php
 }
?>
</table>
</body>
<?php
}
catch(Exception $err)
{
 print("Sorry, an error occurred: $err\n");
}
?>

The page generated looks like this:
Number of matches: 13
1 Noel SMITH
2 Alwyn Smith
3 Graham Smith
4 Peter Smith
5 Kate ECCLES-SMITH
6 Louise WARNE-SMITH
7 Jill SMITH
8 Joanna MURRAY-SMITH
9 Clare Smith
10 B. Smith
11 Ian SMITH
12 Kate Eccles-Smith
13 Grace Cossington SMITH

Accessing an EMu module

Using KE IMu's PHP API

Sorting

The matching set of results can be sorted using IMuModule's sort method. This
method takes two arguments:

• $keys
• $flags

$keys

The $keys argument is used to specify the columns by which to sort the result set. The
argument can be either a simple string or an array of strings. Each string can be a
simple column name or a set of column names, separated by semi-colons or commas.
Each column name can be preceded by a + or –. A leading + indicates that the records
should be sorted in ascending order. A leading – indicates that the records should be
sorted in descending order.

For example, to sort a set of Parties records first by Party Type (ascending), then Last
Name (descending) and then First Name (ascending):

$keys = '+NamPartyType;-NamLast;+NamFirst';

-OR-
$keys = array
(
 '+NamPartyType',
 '-NamLast',
 '+NamFirst'
);

 If a sort order (+ or -) is not given, the sort order defaults to ascending.

31

Accessing an EMu module

32 Using KE IMu's PHP API

$flags

The $flags argument is used to pass one or more flags to control the way the sort is
carried out. As with the $keys argument, the $flags argument can be a simple string
or an array of strings. Each string can be a single flag or a set of flags separated by
semi-colons or commas.

The following flags control the type of comparisons used when sorting:

'word-based' sort disregards all punctuation and white spaces (more than the
one space between words). For example:
Traveler's Inn

will be sorted as
Travelers Inn

'full-text' sort includes all punctuation and white spaces. For example:
Traveler's Inn

will be sorted as
Traveler's Inn

and will therefore differ from:
Traveler's Inn

'compress-
spaces'

sort includes punctuation but disregards all white space (with the
exception of a single space between words). For example:
Traveler's Inn

will be sorted as
Traveler's Inn

 If none of these flags is included, the comparison defaults to 'word-based'.

Accessing an EMu module

Using KE IMu's PHP API

33

The following flags modify the sorting behaviour:

'case-
sensitive'

sort is sensitive to upper and lower case. For example:
Melbourne gallery

will be sorted separately to
Melbourne Gallery

'order-
insensitive'

Values in a multi-value field will be sorted alphabetically regardless
of the order in which they display. For example, a record which has
the following values in the NamRoles_tab column in this order:
Collection Manager
Curator
Internet Administrator

and another record which has the values in this order:
Internet Administrator
Collection Manager
Curator

will be sorted the same.
'null-low' Records with empty records will be placed at the start of the result

set rather than at the end.
'extended-
sort'

Values that include diacritics will be sorted separately to those that
do not. For example, entrée will be sorted separately to entree.

Accessing an EMu module

34 Using KE IMu's PHP API

The following flags can be used when generating a summary of the sorted
records:

'report' A summary of the sort is generated. The summary is contained in
an associative array. The result is hierarchically structured,
summarising the number of records which match each of the sort
keys. See the example (page 36) for an illustration of the structure.

'table-as-
text'

All data from multi-valued columns will be treated as a single value
(joined by line break characters) in the summary results array.

For example, for a record which has the following values in the
NamRoles_tab column:
Collection Manager, Curator, Internet Administrator

the summary will include statistics for a single value:
Collection Manager
Curator
Internet Administrator

Thus the number of values in the summary results display will match
the number of records.

If this option is not included, each value in a multi-valued column will
be treated as a distinct value in the summary. Thus there may be
many more values in the summary results than there are records.

Accessing an EMu module

Using KE IMu's PHP API

35

Return value

The sort method returns null unless the report flag is used.

If the report flag is used, the sort method returns a simple array representing a list
of distinct terms associated with the primary key in the sorted result set.

Each element in the array is an associative array. This array contains three elements
which describe the term:

• value (a string)
• count (an integer)
• list (an array)

The value element is the distinct value itself.

The count element is the number of records in the result set which have this value.

The list element is a nested array. This holds values for secondary sorts within the
primary sort. This is illustrated in the following example:

Accessing an EMu module

36 Using KE IMu's PHP API

Example

In this example we run a three-level sort on a set of Parties records, sorting first by
Party Type, then Last Name (descending) and then by First Name. Setting up and
running the sort is straightforward:

$parties = new IMuModule('eparties', …);
…
$parties->findTerms(…);
…
$keys = array
(
 '+NamPartyType',
 '-NamLast',
 '+NamFirst'
);
$flags = array
(
 'full-text',
 'case-sensitive',
 'report'
);
$result = $parties->sort($keys, $flags);
print_r($result);

Accessing an EMu module

Using KE IMu's PHP API

37

This will produce output similar to the following:
Array
(
 …
[3] => Array
(
 [count] => 2086
 [value] => Person
 [list] => Array
 (
 …
 [11] => Array
 (
 [count] => 4
 [value] => Young
 [list] => Array
 (
 [0] => Array
 (
 [count] => 1
 [value] => Derek
)
 [1] => Array
 (
 [count] => 1
 [value] => Don
)
 [2] => Array
 (
 [count] => 1
 [value] => George
)
 [3] => Array
 (
 [count] => 1
 [value] => Shirley
)
)
)
 …
)
 …
)

Multimedia

Using KE IMu's PHP API

S E C T I O N 5

Multimedia

The multimedia resources associated with an EMu record can be retrieved using
IMuModule's fetch method by specifying a special column called multimedia. When
this column is requested the server returns the set of multimedia attachments
associated with the record in question.

The set is returned as an array of associative arrays. Each array includes the following
information:

• irn
The irn of the resource in EMu's Multimedia module.

• type
The media type: typically image, audio, video, etc.

• format
The media format or sub-type such as jpeg or tiff for image formats, wav or mpeg
for audio.

This is equivalent to the column request:
multimedia=MulMultiMediaRef_tab.
(
 irn,
 type=MulMimeType,
 format=MulMimeFormat
)

with the addition that the result does not contain any empty entries (i.e. entries
corresponding to null values in the MulMultiMediaRef_tab column) or any entries for
Multimedia records which are not accessible via IMu.

39

Multimedia

40 Using KE IMu's PHP API

For example:
$mySession = new IMuSession('server.com', 40999);
$mySession->connect();

$parties = new IMuModule('eparties', $mySession);

// Build the search and run it
$search = array('NamLast', 'Pavarotti');
$parties->findTerms($search);

// Build list of columns to fetch
$columns = array
(
 'NamFirst',
 'NamLast',
 'multimedia'
);

// We are only interested in the first record
$result = $parties->fetch('start', 0, 1, $columns);
$rows = $result->rows;
$row = $rows[0];

// Display the results
$first = $row['NamFirst'];
$last = $row['NamLast'];
$multimedia = $row['multimedia'];

printf("First Name: %s\n", $first);
printf("Last Name: %s\n", $last);
printf("multimedia (%d)\n", count(multimedia));
foreach ($multimedia as $entry)
{
 $irn = $entry['irn'];
 $type = $entry['type'];
 $format = $entry['format'];

 printf(" irn %d: %s/%s\n", $irn, $type, $format);
}

will produce output such as:
First Name: Luciano
Last Name: PAVAROTTI
multimedia (11)
 irn 100096: image/gif
 irn 100100: image/gif
 irn 100101: image/gif
 irn 100102: image/gif
 irn 100105: image/jpeg
 irn 100095: video/quicktime
 irn 100103: video/quicktime
 irn 100098: audio/wav
 irn 100099: audio/wav
 irn 100104: audio/wav
 irn 100097: application/msword

Multimedia

Using KE IMu's PHP API

41

The multimedia column is an example of an IMu "virtual" column. The column does not
actually exist in the EMu table being accessed. Instead, the IMu server interprets the
request for the column and builds an appropriate response. There are other virtual
columns that can be used when accessing a record's multimedia attachments:

• images
This returns the subset of multimedia attachments which have a mime type of
image. Like multimedia, this is returned as an array of associative arrays for each
image.

• image
The preferred image from the set of images. Currently this is the same as the first
entry in the array returned by images. However, future versions of EMu may allow
another multimedia attachment to be flagged as the preferred image, in which
case the image column will return information for the preferred resource, rather
than the first one. This is returned as a single associative array.

• videos
This returns the subset of multimedia attachments which have a mime type of
video.

• video
The preferred video from the set of videos. Currently this is the same as the first
entry in the array returned by videos.

All these virtual columns act as reference columns into the Multimedia module. This
means that other Multimedia columns can also be requested from the corresponding
Multimedia record. For example, to include the publisher (DetPublisher) in the
information returned for each attached multimedia resource:

multimedia.DetPublisher

The returned associative arrays will include a DetPublisher entry as well as the
standard irn, type and format entries.

Any standard columns from the Multimedia module can be requested in this way. In
addition, the Multimedia module includes a virtual column, resource, which can be used
get access to the contents of the actual multimedia resource. The resource column is
returned as another associative array. The object includes the following information:

• identifier
The contents of the multimedia record's MulIdentifier field.

• mimeType
The media type: typically image, audio, video, etc.

• mimeFormat
The media format or sub-type such as jpeg or tiff for image formats, wav or mpeg
for audio.

• size
The size of the resource in bytes.

• file
An open PHP file handle. This provides a read-only handle to a temporary copy of
the resource itself. The temporary copy of the file is discarded when the file
handle is closed or destroyed.

Multimedia

42 Using KE IMu's PHP API

• height
For images, the height of the image in pixels.

• width
For images, the width of the image in pixels.

The following code fragment retrieves Parties IRN 53, displays the information for its
preferred attached image and creates a copy of the resource in a file called image-
copy:

$parties = new IMuModule('eparties', $mySession);
$hits = $parties->findKey(53);

$columns = array
(
 'NamFirst',
 'NamLast',
 'image.resource'
);

$result = $parties->fetch('start', 0, 1, $columns);
…
$rows = result->rows;

// Because we did a findKey() search, we are only
// interested in the first row.
$row = $rows[0];

$image = $row['image'];
$resource = $image['resource'];

// Print out information about the resource
$identifier = $resource['identifier'];
$mimeType = $resource['mimeType'];
$mimeFormat = $resource['mimeFormat'];
$size = $resource['size'];

printf("identifier: %s\n", $identifier);
printf("mimeType: %s\n", $mimeType);
printf("mimeFormat: %s\n", $mimeFormat);
printf("size: %d\n", $size);

// Save a copy of the resource
$temp = $resource['file'];
$copy = fopen('image-copy', 'wb');
for (;;)
{
 $data = fread($temp, 4096); // read 4K at a time
 if ($data === false || strlen($data) == 0)
 break;
 fwrite($copy, $data);
}
fclose($copy);

Multimedia

Using KE IMu's PHP API

43

This will produce output similar to:
identifier: LucianoPavarotti.gif
mimeType: image
mimeFormat: gif
size: 19931

as well as creating a file called image-copy which contains the copy of the image itself.

The previous example retrieves a binary copy of the master resource in its original
format. It is also possible to modify how the resource is returned. This is done by
adding modifiers to the resource column request. Modifiers are added after the column
name and inside a set of braces.

The modifiers which can be applied to the resource column are:

• encoding
Specifies that the resource returned should be encoded. The only currently
supported encoding is base64. By default the resource is returned as raw binary
data.
Example:
 resource{encoding:base64}

• checksum
Specifies that the information returned with the resource should include a
checksum. The checksum requested can be crc32 or md5.
Example:
 resource{checksum:crc32}

In addition other modifiers can be applied to image resources:

• format
Specifies the format of the required image. If the master image is already in the
required format, then it is returned. Otherwise the image is reformatted on-the-fly
and the reformatted image is returned.
Example:
 resource{format:gif}
This requests that the imaged is returned as a gif.
The IMu server uses ImageMagick to process the image and the range of
supported formats is very large. The complete list is available from:
http://www.imagemagick.org/script/formats.php

• height
Specifies the height of the image required in pixels. If the record contains a
resolution with this height, this resolution is returned. Otherwise the closest
matching larger resolution is resized to the requested height on-the-fly and the
resized image is returned.
Example:
 resource{height:200}

• width

Multimedia

44 Using KE IMu's PHP API

Specifies the width of the image required in pixels. If the record contains a
resolution with this width, this resolution is returned. Otherwise the closest
matching larger resolution is resized to the requested width on-the-fly and the
resized image is returned.
Example:
 resource{width:300}

• bestfit
If set to yes, the image returned is the existing resolution which most closely
matches the specified height or width. No on-the-fly resizing is done.
Example:
 resource{height:300,bestfit:yes}
This returns the image closest to, but larger than, 300 pixels high.

• aspectratio
Controls whether the image's aspect ratio should be maintained when both a
height and a width are specified. If set to no, the aspect ratio is not maintained.
Example:
 resource{height:300,width:300,aspectratio:no}

• source
Controls which image is used as the basis for any reformatting that is required.
By default, if no height or width is specified, the master is used as the source
image. However, if a height or width is supplied, then by default the closest sized
but larger resolution is used as the source. This saves processing time but may
not produce the best result when dealing with lossy formats (such as jpeg). To
override this, a source value of master can be specified.
Example:
 resource{height:300,source:master}
This specifies that the image is generated by resizing the master to 300 pixels
high, rather than by using any appropriate resolution.
The source value can also be thumbnail. In this case the image thumbnail is
used as the source. Typically you would not want to apply size transformations to
the thumbnail but this provides a simple way of retrieving the image's 90x90
thumbnail:
 resource{source:thumbnail}

Maintaining state

Using KE IMu's PHP API

S E C T I O N 6

Maintaining state

One of the biggest drawbacks of the earlier example (page 29) is that it fetches the full
set of results at one time, which is impractical for large result sets. It is more practical to
display a full set of results across multiple pages and allow the user to move forward or
backward through the pages.

This is simple in a conventional application where a connection to the server is
maintained until the user terminates the application. In a web implementation however,
this seemingly simple requirement involves a considerably higher level of complexity
due to the stateless nature of web pages. One such complexity is that each time a new
page of results is displayed, the initial search for the records must be re-executed. This
is inconvenient for the web programmer and potentially slow for the user.

The IMu server provides a solution to this. When a handler object is created, a
corresponding object is created on the server to service the handler's request: this
server-side object is allocated a unique identifier by the IMu server. When making a
request for more information, the unique identifier can be used to connect a new
handler to the same server-side object, with its state intact.

The following example illustrates the connection of a second, independently created
IMuModule object to the same server-side object:

// Create a module object as usual
$first = new IMuModule('eparties', $mySession);

// Run a search - this will create a server-side object
$keys = array(1, 2, 3, 4, 5, 42);
$first->findKeys($keys);

// Get a set of results
$result1 = $first->fetch('start', 0, 2, 'SummaryData');

// Create a second module object
$second = new IMuModule('eparties', $mySession);

// Attach it to the same server-side object as the
// first module. This is the key step.
$second->id = $first->id;

// Get a second set of results from the same search
$result2 = $second->fetch('current', 1, 2, 'SummaryData');

Although two completely separate IMuModule objects have been created, they are
each connected to the same server-side object by virtue of having the same id
property. This means that the second fetch call will access the same result set as the
first fetch. Notice that a flag of 'current' has been passed to the second call. The
current state is maintained on the server-side object, so in this case the second call to
fetch will return the third and fourth records in the result set.

45

Maintaining state

46 Using KE IMu's PHP API

While this example illustrates the use of the id property, it is not particularly realistic as
it is unlikely that two distinct objects which refer to the same server-side object would
be required in the same piece of code. The need to re-connect to the same server-side
object when generating another page of results is far more likely. This situation involves
creating a server-side IMuModule object (to search the module and deliver the first set
of results) in one request and then re-connecting to the same server-side object (to
fetch a second set of results) in a second request. As before, this is achieved by
assigning the same identifier to the id property of the object in the second page, but
two other things need to be considered.

By default the IMu server destroys all server-side objects when a session finishes. This
means that unless the server is explicitly instructed not to do so, the server-side object
may be destroyed when the connection from the first page is closed. Telling the server
to maintain the server-side object only requires that the $destroy property on the
object is set to false before calling any of its methods. In the example above, the
server would be instructed not to destroy the object as follows:

$module = new IMuModule('eparties', $mySession);
$module->destroy = false;
$keys = array(1, 2, 3, 4, 5, 42);
$module->findKeys($keys);

The second point is quite subtle. When a connection is established to a server, it is
necessary to specify the port to connect to. Depending on how the server has been
configured, there may be more than one server process listening for connections on
this port. Your program has no control over which of these processes will actually
accept the connection and handle requests. Normally this makes no difference, but
when trying to maintain state by re-connecting to a pre-existing server-side object, it is
a problem.

For example, suppose there are three separate server processes listening for
connections. When the first request is executed it connects, effectively at random, to
the first process. This process responds to the request, creates a server-side object,
searches the Parties module for the terms provided and returns the first set of results.
The server is told not to destroy the object and passes the server-side identifier to
another page which fetches the next set of results from the same search.

The problem comes when the next page connects to the server again. When the
connection is established any one of the three server processes may accept the
connection. However, only the first process is maintaining the relevant server-side
object. If the second or third process accepts the connection, the object will not be
found.

The solution to this problem is relatively straightforward. Before the first request closes
the connection to its server, it must notify the server that subsequent requests need to
connect explicitly to that process. This is achieved by setting the IMuSession object's
$suspend property to true prior to submitting any request to the server:

$mySession = new IMuSession('server.com', 12345);
$module = new IMuModule('eparties', $mySession);
…
$mySession->suspend = true;
$module->findKeys(…);

Maintaining state

Using KE IMu's PHP API

47

The server handles a request to suspend a connection by starting to listen for
connections on a second port. Unlike the primary port, this port is guaranteed to be
used only by that particular server process. This means that a subsequent page can
reconnect to a server on this second port and be guaranteed of connecting to the same
server process. This in turn means that any saved server-side object will be accessible
via its identifier. After the request has returned (in this example it was a call to
findKeys), the IMuSession object's $port property holds the port number to
reconnect to:

$mySession->suspend = true;
$module->findKeys(…);
$reconnect = $mySession->port;

Maintaining state

48 Using KE IMu's PHP API

Example

This may seem a little complicated but it is not in fact too difficult to manage in practice.

To illustrate we'll modify the very simple results page of the earlier section to display the
list of matching names in blocks of five records per page. We'll provide simple Next and
Prev links to allow the user to move through the results, and we will use some more
GET parameters to pass the port we want to reconnect to, the identifier of the server-
side object and the rownum of the first record to be displayed.

The code to be modified is in results.php and is all inside the try block (so we don't
show the other code outside the try block).

First, we create the IMuSession object. We set the $port property to a standard value
unless a port parameter has been passed in the URL:

/* Create new session object.
*/
$session = new IMuSession();
$session->host = 'server.com';

/* Work out what port to connect to
*/
$port = 12345;
if (array_key_exists('port', $_GET))
 $port = $_GET['port'];
$session->port = $port;

Next we connect to the server. We immediately set the $suspend property to true to
tell the server that we may want to connect again (this ensures the server listens on a
new, unique port):

/* Establish connection and tell the server
** we may want to re-connect
*/
$session->connect();
$session->suspend = true;

We then create the client-side IMuModule object and set its $destroy property to
false, ensuring the server will not destroy it:

/* Create module object and tell the server
** not to destroy it.
*/
$module = new IMuModule('eparties', $session);
$module->destroy = false;

Maintaining state

Using KE IMu's PHP API

49

If the URL included a name parameter, we need to do a new search. Alternatively, if it
included an id parameter, we need to connect to an existing server-side object:

/* If name is supplied, do new search. The
** search term is passed from search.html using GET
*/
if (array_key_exists('name', $_GET))
 $module->findTerms(array('NamLast', $_GET['name']));

/* Otherwise, if id is supplied reattach to
** existing server-side object
*/
else if (array_key_exists('id', $_GET))
 $module->id = $_GET['id'];

/* Otherwise, we can't process */
else
 throw new Exception('no name or id');

As before, we build a list of columns to fetch:
/* Build list of columns to fetch */
$columns = array
(
 'NamFirst',
 'NamLast'
);

If the URL included a rownum parameter, fetch records starting from there. Otherwise
start from record number 1:

/* Work out which block of records to fetch */
$rownum = 1;
if (array_key_exists('rownum', $_GET))
 $rownum = $_GET['rownum'];

Build the main page as before:
/* Fetch next five records */
$results = $module->fetch('start', $rownum - 1, 5, $columns);

/* Build the results page */
?>
<body>
<p>Number of matches: <?php echo $results->hits ?></p>
<table>
<?php
/* Display each match in a separate row in a table */
foreach ($results->rows as $row)
{
?>
 <tr>
 <td><?php echo $row['rownum'] ?></td>
 <td><?php echo $row['NamFirst'], ' ', $row['NamLast'] ?></td>
 </tr>
<?php
}
?>
</table>

Maintaining state

50 Using KE IMu's PHP API

Finally we add the Prev and Next links to allow the user to page backwards and
forwards through the results. This is the most complicated part! First, we want to ensure
that we connect to the same server and server-side object, so we add the appropriate
port and id parameters to our URL:

<?php
/* Add the Prev and Next links */
$url = $_SERVER['PHP_SELF'];
$url .= '?port=' . $session->port;
$url .= '&id=' . $module->id;

If we are not already showing the first record, we add a Prev link to allow the user to go
back one page in the result set:

$first = $results->rows[0];
if ($first['rownum'] > 1)
{
 $prev = $first['rownum'] - 5;
 if ($prev < 1)
 $prev = 1;
 $prev = $url . '&rownum=' . $prev;
?>
<a href="<?php echo $prev ?>">Prev
<?php
}

Similarly, if we are not already showing the last record, we add a Next link to allow the
user to go forward one page:

$last = $results->rows[count($results->rows) - 1];
if ($last['rownum'] < $results->hits)
{
 $next = $last['rownum'] + 1;
 $next = $url . '&rownum=' . $next;
?>
<a href="<?php echo $next ?>">Next
<?php
}
?>
</body>

Maintaining state

Using KE IMu's PHP API

The resulting web page looks like this:

51

Exceptions

Using KE IMu's PHP API

S E C T I O N 7

Exceptions

When an error occurs, the IMu PHP API throws an exception. The exception is an
IMuException object. This is a subclass of PHP's standard Exception class.

For simple error handling all that is usually required is to catch the exception as an
Exception object and report the exception as a string:

try
{
 …
}
catch (Exception $e)
{
 echo "Error: $e";
 exit(1);
}

IMuException overrides the Exception's __toString method (which is called
"magically" when the exception object is used as a string) and returns an error
message.

 Ideally IMuException would override Exception's getMessage method to
return the error message. Unfortunately, getMessage is declared final in
Exception, preventing it from being overridden.

To handle specific IMu errors it is necessary to catch the exception as an
IMuException object. IMuException includes a property called id. This is a string
and contains the internal IMu error code for the exception. For example, you may want
to catch the exception raised when an IMuSession's connect method fails and try to
connect to an alternative server:

53

Exceptions

54 Using KE IMu's PHP API

$mainServer = 'server1.com';
$alternativeServer = 'server2.com';
$session = new IMuSession;
$session->host = $mainServer;
try
{
 $session->connect();
}
catch (IMuException $e)
{
 /* Check for specific SessionConnect error
 */
 if ($e->id != 'SessionConnect')
 {
 echo "Error: $e";
 exit(1);
 }
 $session->host = $alternativeServer;
 try
 {
 $session->connect();
 }
 catch (Exception $e)
 {
 echo "Error: $e";
 exit(1);
 }
}
/* By the time we get to here the session is connected
** to either the main server or the alternative.
*/

Reference

Using KE IMu's PHP API

S E C T I O N 8

Reference

Class IMuHandler

require_once IMu::$lib . '/Handler.php'

Provides a general low-level interface to creating server-side objects.

Constructor

public __construct([IMuSession $session])

Creates an object which can be used to interact with server-side objects.

Parameters

$session An IMuSession object to be used to
communicate with the IMu server.

 If this parameter is not supplied, a new session is
created automatically using the IMuSession
class's default host and port values.

55

Reference

56 Using KE IMu's PHP API

Properties

mixed $create

 An object to be passed to the server when the server-side object is created. To
have any effect this must be set before any object methods are called. This
property is usually only set by sub-classes of IMuHandler.

boolean $destroy

 A flag controlling whether the corresponding server-side object should be
destroyed when the session is terminated.

string $id

 The unique identifier assigned to the server-side object once it has been
created.

string $language

 The language to be used in the server.

string $name

 The name of the server-side object to be created. This must be set before any
object methods are called.

IMuSession $session (read-only)

 The session object used by the handler to communicate with the IMu server.

Reference

Using KE IMu's PHP API

57

Methods

public mixed call(string $method [, mixed $parameters])

Calls a method on the server-side object.

Parameters

$method The name of the method to be called.

$parameters Any parameters to be passed to the method. The
call method uses PHP's reflection to determine
the structure of the parameters to be transmitted
to the server.

Passing $parameters is optional.

Returns An object containing the result returned by the server-side
method.

Throws IMuException if a server-side error occurred.

public mixed request(mixed $request)

Submits a low-level request to the IMu server. This method is chiefly used by the call
method above.

Parameters

$request An object containing the request parameters.

Returns An object containing the server's response.

Throws IMuException if a server-side error occurred.

Reference

58 Using KE IMu's PHP API

Class IMu

require_once '…/IMu.php'

Simple class containing general IMu properties. This class cannot be instantiated.

Class constants

string VERSION

 The version number of the IMu API.

Class properties

mixed $lib

The path to the installed IMu PHP source code.

Reference

Using KE IMu's PHP API

59

Class IMuException

require_once IMu::$lib . '/Exception.php'

Extends: Exception

Class for IMu-specific exceptions.

Constructor

public __construct(string $id [, mixed $args [, mixed $...]])

Creates an IMu specific exception.

Parameters

$id A string exception code.

$args Any additional arguments used to provide further
information about the exception.

Properties

mixed $args

getter getArgs()

setter setArgs(mixed $args)

The set of arguments associated with the exception.

string $id

getter getID()

 The unique identifier assigned to the server-side object once it has been
created.

Reference

60 Using KE IMu's PHP API

Methods

public string toString()

Overrides the standard PHP _toString method.

Returns A string description of the exception.

Reference

Using KE IMu's PHP API

61

Class IMuModule

require_once IMu::$lib . '/Module.php'

Extends: IMuHandler

Provides access to an EMu module.

Constructor

public __construct(string $table [, IMuSession $session])

Creates an object which can be used to access the EMu module specified by table.

Parameters

$table Name of the EMu module to be accessed.

$session A Session object to be used to communicate
with the IMu server.

 If this parameter is not supplied, a new session is
created automatically using the IMuSession
class's default host and port values.

Properties

string $table (read-only)

The name of the table associated with the IMuModule object.

Reference

62 Using KE IMu's PHP API

Methods

public int addFetchSet(string $name, mixed $columns)

Associates a set of columns with a logical name in the server. The name can be used instead
of a column list when retrieving data using fetch.

Parameters

$name The logical name to associate with the set of
columns.

$columns A string or an array of strings containing the
names of the columns to be used when $name is
passed to fetch. Each string can contain one or
more column names, separated by a semi-colon
or a comma.

Returns The number of sets (including this one) registered in the server.

Throws IMuException if a server-side error occurred.

public int addFetchSets(array $sets)

Associates several sets of columns with logical names in the server. This is the equivalent of
calling addFetchSet for each entry in the map but is more efficient.

Parameters

$sets An associative array containing mappings
between names and sets of columns.

Returns The number of sets (including these ones) registered in the
server.

Throws IMuException if a server-side error occurred.

Reference

Using KE IMu's PHP API

63

public int addSearchAlias(string $name, mixed $columns)

Associates a set of columns with a logical name in the server. The name can be used when
specifying search terms to be passed to findTerms. The search becomes the equivalent of
an OR search involving the columns.

Parameters

$name The logical name to associate with the set of
columns.

$columns A string or an array of strings containing the
names of the columns to be used when $name is
passed to findTerms. Each string can contain
one or more column names, separated by a
semi-colon or a comma.

Returns The number of aliases (including this one) registered in the
server.

Throws IMuException if a server-side error occurred.

public int addSearchAliases(array $aliases)

Associates several sets of columns with logical names in the server. This is the equivalent of
calling addSearchAlias for each entry in the map but is more efficient.

Parameters

$aliases An associative array containing a set of mappings
between a name and a set of columns.

Returns The number of sets (including these ones) registered in the
server.

Throws IMuException if a server-side error occurred.

Reference

64 Using KE IMu's PHP API

public int addSortSet(string $name, mixed $keys)

Associates a set of sort keys with a logical name in the server. The name can be used
instead of a sort key list when sorting the current result set using sort.

Parameters

$name The logical name to associate with the set of
columns.

$keys A string or an array of strings containing the
names of the keys to be used when $name is
passed to sort. Each string can contain one or
more keys, separated by a semi-colon or a
comma.

Returns The number of sets (including this one) registered in the server.

Throws IMuException if a server-side error occurred.

public int addSortSets(array $sets)

Associates several sets of sort keys with logical names in the server. This is the equivalent of
calling addSortSet for each entry in the map but is more efficient.

Parameters

$sets An associative array containing a set of mappings
between a name and a set of keys.

Returns The number of sets (including these ones) registered in the
server.

Throws IMuException if a server-side error occurred.

Reference

Using KE IMu's PHP API

65

public IMuModuleFetchResult fetch(string $flag, int $offset, int $count [,
mixed $columns])

Fetches count records from the position described by a combination of flag and offset.

Parameters

$flag The position to start fetching records from. Must
be one of:

 'start'
 'current'
 'end'

$offset The position relative to $flag to start fetching
from.

$count The number of records to fetch. A $count of zero
is permitted to change the location of the current
record without returning any results. A $count of
less than zero causes all the remaining records in
the result set to be returned.

$columns A string or an array of strings containing the
names of the columns to be returned for each
record or the name of a column set which has
been registered previously using addFetchSet.
Each string can contain one or more column
names, separated by a semi-colon or a comma.

 If this parameter is not supplied, no column data
is returned. The results will still include the
pseudo-column rownum for each fetched record.

Returns A IMuModuleFetchResult object.

Throws IMuException if a server-side error occurred.

Reference

66 Using KE IMu's PHP API

public int findKey(int $key)

Searches for a record with the key value key.

Parameters

$key The key of the record being searched for.

Returns The number of records found. This will be either 1 if the record
was found or 0 if not found.

Throws IMuException if a server-side error occurred.

public int findKeys(array $keys)

Searches for records with key values in the array keys.

Parameters

$keys The list of keys being searched for.

Returns The number of records found.

Throws IMuException if a server-side error occurred.

public int findTerms(mixed $terms)

Searches for records which match the search terms specified in terms.

Parameters

$terms The search terms.

Returns An estimate of the number of records found.

Throws IMuException if a server-side error occurred.

public int findWhere(string $where)

Searches for records which match the TexQL where clause.

Parameters

$where The TexQL where clause to use.

Returns An estimate of the number of records found.

Throws IMuException if a server-side error occurred.

Reference

Using KE IMu's PHP API

67

public int restoreFromFile(string $file)

Restores a set of records from a file on the server machine which contains a list of keys, one
per line.

Parameters

$file The file on the server machine containing the
keys.

Returns The number of records found.

Throws IMuException if a server-side error occurred.

public int restoreFromTemp(string $file)

Restores a set of records from a temporary file on the server machine which contains a list of
keys, one per line. Operates the same way as restoreFromFile except that the $file
parameter is relative to the server's temporary directory.

Parameters

$file The file on the server machine containing the
keys.

Returns The number of records found.

Throws IMuException if a server-side error occurred.

public mixed ModuleSortResult sort(mixed $keys, mixed $flags)

Sorts the current result set by the sort keys in $keys. Each sort key is a column name
optionally preceded by a "+" (for an ascending sort) or a "-" (for a descending sort).

Parameters

$keys A string or array of strings containing the list of
sort keys. Each string can contain one or more
keys, separated by a semi-colon or a comma.

$flags A string or array of strings containing a set of
flags specifying the behaviour of the sort. Each
string can contain one or more flags, separated
by a semi-colon or a comma.

Returns An array containing the report information if the report flag has
been specified. Otherwise the result will be null.

Throws IMuException if a server-side error occurred.

Reference

68 Using KE IMu's PHP API

Class IMuModuleFetchResult

require_once IMu::$lib . '/Module.php'

Provides results from a call to the IMuModule fetch method.

Properties

int $count

 The number of records returned in the result.

int $hits

 The best estimate of the size of the result set after the fetch method has
completed. When the Module object generates a result set using findTerms or
findWhere, the number of matches is occasionally an overestimate of the true
number of matches. After the fetch method has been called, the IMu server
may have a better estimate of the true number of matches so it is included in
the result.

array $rows

 The array of the records actually fetched. Each record is represented by an
associative array with the keys being the names of the columns requested in
the fetch call.

Reference

Using KE IMu's PHP API

69

Class IMuSession

require_once IMu::$lib . '/Session.php'

Manages a connection to an IMu server. The server’s host name and port can be specified in
the constructor by setting properties on the object or by setting class-based default
properties.

Class Properties

string $defaultHost

getter getDefaultHost()

setter setDefaultHost(string $host)

 The name of the host used to create a connection if no object-specific host has
been supplied.

int $defaultPort

getter getDefaultPort()

setter setDefaultPort(int $port)

 The number of the port used to create a connection if no object-specific host
has been supplied.

Constructor

public __construct([string $host [, int $port]])

Creates a Session object with the specified host and port.

Parameters

$host The host to connect to.

 If this parameter is not supplied the class
property $defaultHost will be used instead.

$port The port number to connect to.

 If this parameter is not supplied, the class
property $defaultPort will be used instead.

Reference

70 Using KE IMu's PHP API

Properties

boolean $close

 A flag controlling whether the connection to the server should be closed after
the next request. This flag is passed to the server as part of the next request to
allow it to clean up.

string $context (read-only)

 The unique identifier assigned by the server to the current session.

string $host

 The name of the host used to create the connection. Setting this property after
the connection has been established has no effect.

int $port

 The number of the port used to create the connection. Setting this property
after the connection has been established has no effect.

boolean $suspend

 A flag controlling whether the server process handling this session should
begin listening on a distinct, process-specific port to ensure a new session
connects to the same server process. This is part of IMu's mechanism for
maintaining state. If this flag is set to true, then after the next request is made
to the server, the IMuSession's port property will be altered to the process-
specific port number.

Reference

Using KE IMu's PHP API

71

Methods

public void connect()

Opens a connection to an IMu server.

Throws IMuException if the connection could not be opened.

public void disconnect()

Closes the connection to the IMu server.

public void login(string $user, string $password [, boolean $spawn])

Logs in as the given user with the given password. If the $spawn parameter is set to true,
this will cause the server to create a new child process specifically to handle the newly
logged in user's requests.

Parameters

$user The name of the user to login as.

$password The user's password for authentication.

$spawn A flag indicating whether the process should
create a new child process specifically for
handling the newly logged in user's requests.

 If this parameter is not supplied, it defaults to
true.

Throws IMuException if the login request failed.

 Exception (or another subclass) if a low-level socket
communication error occurred.

public void login(String user, String password)

Same as login above except that the $spawn parameter defaults to true.

public array request(array $request)

Submits a low-level request to the IMu server.

Parameters

$request An associative array containing the request
parameters.

Returns An associative array containing the server's response.

Throw IMuException if a server-side error occurred.

Index

$

• ...$
columns • 18

• ...$
count • 17

• ...$
flag and $offset • 17

• ...$
flags • 32

• ...$
keys • 31

A

• ...A
 simple example • 29, 45

• ...A
ccessing an EMu module • 9

• ...A
ttachments • 22

C

• ...C
lass constants • 58

• ...C
lass IMu • 58

• ...C
lass IMuException • 59

• ...C
lass IMuHandler • 55

• ...C
lass IMuModule • 61

• ...C
lass IMuModuleFetchResult • 68

• ...C
lass IMuSession • 69

• ...C
lass properties • 58

• ...C
lass Properties • 69

• ...C
olumn sets • 28

• ...C
onnecting to an IMu server • 7, 9

• ...C

onstructor • 55, 59, 61, 69

E

• ...E
xample • 34, 36, 48

• ...E
xamples • 13

• ...E
xceptions • 5, 53

F

• ...f
indKey • 11

• ...f
indKeys • 11

• ...f
indTerms • 12

• ...f
indWhere • 15

G

• ...G
etting information from matching records • 16

• ...G
rouping a set of nested table columns • 25

H

• ...H
andlers • 7, 8

I

• ...I
ntroduction • 1

M

• ...M
aintaining state • 28, 45

• ...M
ethods • 57, 60, 62, 71

• ...M
ultimedia • 39

N

• ...N
umber of matches • 15

P

•..P
roperties • 56, 59, 61, 68, 70

R

•..R
eference • 55

•..R
ename a column • 24

•..R
eturn value • 35

•..R
eturn values • 19

•..R
everse attachments • 23

S

•..S
earching a module • 10

•..S
orting • 31

T

•..T
est page • 4

U

•..U
sing IMu’s PHP library • 3

	Test page
	Exceptions
	Handlers
	Searching a module
	findKey
	findKeys
	findTerms
	Examples

	findWhere
	Number of matches

	Getting information from matching records
	$flag and $offset
	$count
	$columns
	Return values
	Attachments
	Reverse attachments
	Rename a column
	Grouping a set of nested table columns
	Column sets

	A simple example
	Sorting
	$keys
	$flags
	Return value
	Example

	Example
	Class IMuHandler
	Constructor
	Properties
	Methods

	Class IMu
	Class constants
	Class properties

	Class IMuException
	Constructor
	Properties
	Methods

	Class IMuModule
	Constructor
	Properties
	Methods

	Class IMuModuleFetchResult
	Properties

	Class IMuSession
	Class Properties
	Constructor
	Properties
	Methods

	Index

