
 
 

 

www.kesoftware.com 
©  2011 KE Software. All rights reserved. 

 

IMu Documentation 

Using KE IMu's Java API 
Document Version 1.2 

EMu Version 4.0  
IMu Version 1.0.03 

 





 

Contents 

 

S E C T I O N  1  Introduction 1 

S E C T I O N  2  Using IMu’s Java library 3 
Test Program 4 
Exceptions 5 

S E C T I O N  3  Connecting to an IMu server 7 
Handlers 8 

S E C T I O N  4  Accessing an EMu Module 9 
Searching a Module 10 

findKey 11 
findKeys 12 
findTerms 13 

Examples 14 
findWhere 16 
Number of matches 16 

Getting Information from Matching Records 17 
flag and offset 18 
count 19 
columns 20 
Return Values 21 

Attachments 24 
Reverse Attachments 25 
Rename a Column 26 
Grouping a set of nested table columns 27 
Column Sets 29 

A Simple Example 30 
Sorting 33 

keys 33 
flags 34 
Return Value 37 
Example 38 

S E C T I O N  5  Multimedia 41 

S E C T I O N  6  Maintaining State 47 
Example 50 

S E C T I O N  7  Exceptions 55 

S E C T I O N  8  Reference 57 
Class Handler 57 

Constructors 57 
Properties 58 
Methods 59 



 

 

Class IMu 60 
Class constants 60 

Class IMuException 61 
Constructors 61 
Properties 61 
Methods 62 

Class Map 63 
Methods 63 

Class Module 66 
Constructors 66 
Properties 66 
Methods 67 

Class ModuleFetchResult 73 
Properties 73 

Class ModuleSortResult 74 
Properties 74 

Class ModuleSortTerm 75 
Properties 75 

Class Session 76 
Class Properties 76 
Constructors 76 
Properties 77 
Methods 78 

Class TempInputStream 79 
Constructors 79 
Methods 79 

Class Terms 80 
Constructors 80 
Properties 80 
Methods 81 

Enum TermsKind 82 
Members 82 

Index 83 
  



Introduction 
 

 

 

S E C T I O N  1  

Introduction 
IMu, or Internet Museum, broadly describes KE Software's strategy and toolset for 
distributing data held within EMu via the Internet. Distribution includes the 
publishing of content on the web, but goes far beyond this to cover sharing of data 
via the Internet (portals, online partnerships, etc.); publishing content to new 
mobile technologies; iPod guided tours, etc. 

To facilitate these various Internet projects, KE has produced a set of documents 
that describe how to implement and customise IMu components, including: 

• APIs (for Developers) 
• Web pages for publishing EMu 
• Tools, including: 

• iPhone / mobile interfaces 
• iPod guided tours 

This document describes use of the IMu Java API. 
 

 Page 1 
 





Using IMu’s Java library 
 

 

 

S E C T I O N  2  

Using IMu’s Java library 
A single jar file, imu-1-0-03.jar (or higher), is required to develop an IMu-
based application. This jar contains all the classes that make up the IMu Java API. 

As with all jar files, the IMu jar must be included in the Java class path so that the 
java compiler and java runtime environment can find and use the IMu classes. 
Tools for Java development such as Eclipse and NetBeans allow you to add a 
reference to the IMu jar to your project. 

All classes in the IMu Java API are included in the one package, 
com.kesoftware.imu. As is usual in Java development you are able to refer to an 
IMu class in your code by: 

• Using the fully qualified name: 
  com.kesoftware.imu.Session session = new  
   com.kesoftware.imu.Session(); 

• Importing the required class explicitly: 
  import com.kesoftware.imu.Session; 
  … 
  Session session = new Session(); 

• Importing all the classes from the package implicitly: 
  import com.kesoftware.imu.*; 
  … 
  Session session = new Session(); 

 

 Page 3 
 



Using IMu’s Java library 
 

 

 

Page 4  
 

Test Program 
Compiling and running this very simple IMu program is a good test of whether the 
development environment has been set up properly for using IMu: 
import com.kesoftware.imu.*; 
 
class Hello 
{ 
 static void main(String[] args) 
 { 
  System.out.format("IMu version %s%n", IMu.VERSION); 
 } 
} 

The IMu library includes a class called IMu. This class includes a static String 
member called VERSION which contains the version of this IMu release. 

 



Using IMu’s Java library 
 

 

 

Exceptions 
Many of the methods in the IMu library objects throw exceptions when an error 
occurs. For this reason, code that uses IMu library objects should be surrounded 
with a try/catch block. 

The following code is a basic template for writing Java programs which uses the 
IMu library: 
import com.kesoftware.imu.*; 
… 
try 
{ 
 // Create and use IMu objects  
 … 
} 
catch (Exception e) 
{ 
 // Handle or report error  
 … 
} 

Most IMu exceptions throw an IMuException object. IMuException is a 
subclass of the standard Java Exception. In many cases your code can simply 
catch the standard Exception (as in this template). If more information is 
required about the exact IMuException thrown, see Exceptions (page 55). 

 Many of the examples that follow assume that code fragments have been 
surrounded with code structured in this way. 
 

 Page 5 
 





Connecting to an IMu server 
 

 

 

S E C T I O N  3  

Connecting to an IMu server 
Most IMu based programs begin by creating a connection to an IMu server. 
Connections to a server are created and managed using IMu’s Session class. 
Before connecting, both the name of the host and the port number to connect on 
must be specified. This can be done in one of three ways. 

The simplest way to create a connection to an IMu server is to pass the host 
name and port number to the Session constructor and then call the connect 
method. For example: 
import com.kesoftware.imu.Session; 
… 
Session mySession = new Session("server.com", 12345); 
mySession.connect(); 

Alternatively, pass no values to the constructor and then set the host and port 
properties (using setHost and setPort) before calling connect: 
import com.kesoftware.imu.Session; 
… 
mySession = new Session(); 
mySession.setHost("server.com"); 
mySession.setPort(12345); 
mySession.connect(); 

If either the host or port is not set, the Session class default value will be used. 
These defaults can be overridden by setting the class (static) properties 
defaultHost and defaultPort: 
import com.kesoftware.imu.Session; 
… 
Session.setDefaultHost("server.com"); 
Session.setDefaultPort(12345); 
mySession = new Session(); 
mySession.connect(); 

This technique is useful when planning to create several connections to the same 
server or when wanting to get a handler object (page 8) to create the connection 
automatically. 

 

 Page 7 
 



Connecting to an IMu server 
 

 

 

Page 8 

Handlers 
Once a connection to an IMu server has been established, it is possible to create 
handler objects to submit requests to the server and receive responses. 

 When a handler object is created, a corresponding object is created by the 
IMu server to service the handler's requests. 

All handlers are subclasses of IMu's Handler class. 

 You do not typically create a Handler object directly but instead use a 
subclass. 

In this document we examine the most frequently used handler, Module, which 
allows you to find and retrieve records from a single EMu module. 

 

 
 



Accessing an EMu Module 
 

 

 

S E C T I O N  4  

Accessing an EMu Module 
A program accesses an EMu module (or table, the terms are used interchangeably) 
using a Module class. The name of the table to be accessed is passed to the Module 
constructor. For example: 
import com.kesoftware.imu.Module; 
… 
Module parties = new Module("eparties", mySession); 

This code assumes that a Session object called mySession has already been 
created. If a Session object is not passed to the Module constructor, a session will 
be created automatically using the defaultHost and defaultPort class 
properties. See Connecting to an IMu Server (page 7) for details. 

Once a Module object has been created, it can be used to search the specified 
module and retrieve records. 

 

 Page 9 
 



Accessing an EMu Module 
 

 

 

Page 10  
 

Searching a Module 
One of the following methods can be used to search for records within a module: 

• findKey 
• findKeys 
• findTerms 
• findWhere 

 



Accessing an EMu Module 
 

 

 

 Page 11 
 

findKey 

The findKey method searches for a single record by its key. The key is of type 
long. 

For example, the following code searches for a record with a key of 42 in the 
Parties module: 
import com.kesoftware.imu.Module; 
… 
Module parties = new Module("eparties", mySession); 
long hits = parties.findKey(42); 

The method returns the number of matches found, which is either 1 if the record 
exists or 0 if it does not. 

 



Accessing an EMu Module 
 

 

 

Page 12  
 

findKeys 

The findKeys method searches for a set of key values. The keys are passed as an 
array of longs: 
Module parties = new Module("eparties", mySession); 
long[] keys = { 52, 42, 17 }; 
long hits = parties.findKeys(keys); 

or as an ArrayList: 
Module parties = new Module("eparties", mySession); 
ArrayList<Long> keys = new ArrayList<Long>(); 
keys.add(52L); 
keys.add(42L); 
keys.add(17L); 
long hits = parties.findKeys(keys); 

The method returns the number of records found. 
 



Accessing an EMu Module 
 

 

 

findTerms 

The findTerms method is the most flexible and powerful way to search for 
records within a module. It can be used to run simple single term queries or 
complex multi-term searches. 

The terms are specified using a Terms object. Once a Terms object has been 
created, add specific terms to it (using the add method) and then pass the Terms 
object to the findTerms method. For example, to specify a Parties search for 
records which contain a First Name of John and a Last Name of Smith: 
Terms search = new Terms(); 
search.add("NamFirst", "John"); 
search.add("NamLast", "Smith"); 
… 
long hits = myModule.findTerms(terms); 

There are several points to note: 

1. The first argument passed to the add method element contains the name of the 
column or an alias in the module to be searched. 

2. The second argument contains the value for which to search. 
3. A comparison operator can be included as a third argument (see example 3 

below). 
The operator specifies how the value supplied as the second argument of the 
array should be matched. Operators are the same as those used in TexQL (see 
KE's TexQL documentation for details). 
Specifying an operator is optional. If none is supplied, the operator defaults to 
matches. This is not a real TexQL operator, but is translated by the search 
engine as the most "natural" operator for the type of column being searched. 
For example, with text columns matches is translated as "contains" and with 
integer columns it is translated as "=". 

 Unless it is really necessary to specify an operator, consider using the 
matches operator, or better still supplying no operator at all as this allows 
the server to determine the best type of search. 

 The first element of each term may be the name of a search alias. A search 
alias associates a name with one or more actual columns. Aliases are created 
using the addSearchAlias or addSearchAliases methods. 
 

 Page 13 
 



Accessing an EMu Module 
 

 

 

Page 14  
 

Examples 

1. To search for the name Smith in the Last Name field of the Parties module, the 
following term can be used: 

Terms search = new Terms(); 
search.add("NamLast", "Smith"); 

2. Specifying search terms for other types of columns is straightforward. For 
example, to search for records inserted on April 4, 2011 

Terms search = new Terms(); 
search.add("AdmDateInserted", "Apr 4 2011"); 

3. To search for records inserted before April 4, 2011, it is necessary to add an 
operator: 

Terms search = new Terms(); 
search.add("AdmDateInserted", "Apr 4 2011", "<"); 

4. By default, the relationship between the terms is a Boolean AND. This means that 
to find records which match both a First Name containing John and a Last Name 
containing Smith the Terms object can be created as follows: 

Terms search = new Terms(); 
search.add("NamFirst", "John"); 
search.add("NamLast", "Smith"); 

5. A Terms object where the relationship between the terms is a Boolean OR can be 
created by passing the enumeration value TermsKind.OR to the Terms 
constructor. This means that: 

Terms search = new Terms(TermsKind.OR); 
search.add("NamFirst", "John"); 
search.add("NamLast", "Smith"); 

specifies a search for records where either the First Name contains John or the 
Last Name contains Smith. 

6. Combinations of AND and OR search terms can be created. The addAnd method 
adds a new set of AND terms to the original Terms object. Similarly the addOr 
method adds a new set of OR terms. To restrict the search for a First Name of 
John and a Last Name of Smith to matching records inserted before April 4, 
2011 or on May 1, 2011, specify: 

Terms search = new Terms(); 
search.add("NamFirst", "John"); 
search.add("NamLast", "Smith"); 
Terms dates = search.addOr(); 
dates.add("AdmDateInserted", "Apr 4 2011", "<"); 
dates.add("AdmDateInserted", "May 1 2011"); 

7. To run a search, pass the terms object to the findTerms method: 
Module parties = new Module("eparties", mySession); 
Terms search = new Terms(); 
search.add("NamLast", "Smith"); 
long hits = parties.findTerms(myTerms); 

As with other find methods, the return value contains the estimated number of 
matches. 



Accessing an EMu Module 
 

 

 

 Page 15 
 

8. To use a search alias, call the addSearchAlias method to associate the alias 
with one or more real column names before calling findTerms. Suppose we 
want to allow a user to search the Catalogue module for keywords. Our 
definition of a keywords search is to search the SummaryData, CatSubjects_tab 
and NotNotes columns. We could do this by building an OR search: 

String keyword = …; 
… 
Terms search = new Terms(TermsKind.OR); 
search.add("SummaryData", keyword); 
search.add("CatSubjects_tab", keyword); 
search.add("NotNotes", keyword); 

 Another way of doing this is to register the association between the name 
keywords and the three columns we are interested in and then pass the name 
keywords as the column to be searched: 

String keyword = …; 
… 
Module catalogue = new Module("ecatalogue", mySession); 
String[] columns = 
{ 
 "SummaryData", 
 "CatSubjects_tab", 
 "NotNotes" 
}; 
catalogue.addSearchAlias("keywords", columns); 
… 
Terms search = new Terms(); 
search.add("keywords", keyword); 
catalogue.findTerms(search); 

 An alternative to passing the columns as an array of strings is to pass a single 
string, with the column names separated by semi-colons: 

String keyword = …; 
… 
Module catalogue = new Module("ecatalogue", mySession); 
String columns = "SummaryData;CatSubjects_tab;NotNotes";
catalogue.addSearchAlias("keywords", columns); 
… 
Terms search = new Terms(); 
search.add("keywords", keyword); 
catalogue.findTerms(search); 

The advantage of using a search alias is that once the alias is registered a simple 
name can be used to specify a more complex OR search. 

9. To add more than one alias at a time, use the IMu Map class to build an 
associative array of names and columns and call the addSearchAliases method:

Map aliases = new Map(); 
aliases.put("keywords",  
 "SummaryData;CatSubjects_tab;NotNotes"); 
aliases.put("title", "SummaryData;TitMainTitle"); 
catalogue.addSearchAliases(aliases); 

 
 



Accessing an EMu Module 
 

 

 

Page 16  
 

findWhere 

With the findWhere method it is possible to submit a complete TexQL where 
clause. 
Module parties = new Module("eparties", mySession); 
String where = "NamLast contains 'Smith'"; 
long hits = parties.findWhere(where); 

Although this method provides complete control over exactly how a search is run, 
it is generally better to use findTerms to submit a search rather than building a 
where clause. There are (at least) two reasons to prefer findTerms over 
findWhere: 

1. Building the where clause requires the code to have detailed knowledge of 
the data type and structure of each column. The findTerms method leaves 
this task to the server. For example, specifying the term to search for a 
particular value in a nested table is straightforward. To find Parties records 
where the Roles nested table contains Artist, findTerms simply requires: 
myTerms.add("NamRoles_tab", "Artist") 
On the other hand, the equivalent TexQL clause is: 
exists(NamRoles_tab where NamRoles contains 'Artist') 
The TexQL for double nested tables is even more complex. 

2. More importantly, findTerms is more secure. 
With findTerms a set of terms is submitted to the server which then builds 
the TexQL where clause. This makes it much easier for the server to check for 
terms which may contain SQL-injection style attacks and to avoid them. 
If your code builds a where clause from user entered data so it can be run 
using findWhere, it is much more difficult, if not impossible, for the server to 
check and avoid SQL-injection. The responsibility for checking for SQL-
injection becomes yours. 

 

Number of matches 

All the find methods return the number of matches found by the search. For 
findKey and findKeys this number is always the exact number of matches found. 
The number returned by findTerms and findWhere is best thought of as an 
estimate. This estimate is almost always correct but because of the nature of the 
indexing used by the server's data engine (Texpress) the number can sometimes be 
an over-estimate of the real number of matches. This is similar to the estimated 
number of hits returned by a Google search. 

 



Accessing an EMu Module 
 

 

 

Getting Information from Matching 
Records 

Module's fetch method is used to get information from the matching records once 
the search of a module has been run. The server maintains the set of matching 
records in a list and fetch can be used to retrieve any information from any 
contiguous block of records in the list. 

The simplest form of the fetch method takes four arguments: 

• flag 
• offset 
• count 
• columns 

 There are many different versions of the fetch method. See Reference (page 
57) for details of each one. 
 

 Page 17 
 



Accessing an EMu Module 
 

 

 

Page 18  
 

flag and offset 

The flag and offset arguments define the starting position of the block records 
to be fetched. The flag argument is a String and must be one of: 

• "start" 
• "current" 
• "end" 

The "start" and "end" flags refer to the first record and the last record in the 
matching set. The "current" flag refers to the position of the last record fetched 
by the previous call to fetch. If fetch has not been called, "current" refers to 
the first record in the matching set. 

The offset argument is an int. It adjusts the starting position relative to the 
flag. A positive value for offset specifies a start after the position specified by 
flag and a negative value specifies a start before the position specified by flag. 

For example, calling fetch with a flag of "start" and offset of 3 will cause 
fetch to return records starting from the fourth record in the matching set. 
Specifying a flag of "end" and an offset of -8 will cause fetch to return 
records starting from the ninth last record in the matching set.  

To retrieve the next record after the last returned by the previous fetch, you 
would pass a flag of "current" and an offset of 1. 

 



Accessing an EMu Module 
 

 

 

 Page 19 
 

count 

The count argument specifies the maximum number of records to be retrieved. 

Passing a count value of 0 is valid. This causes fetch to change the current 
record without actually retrieving any data. 

Using a negative value of count is also valid. This causes fetch to return all the 
records in the matching set from the starting position (specified by flag and 
offset). 

 



Accessing an EMu Module 
 

 

 

Page 20  
 

columns 

The columns argument is used to specify which columns should be included in 
the returned records. The argument can be either a simple String, an array of 
Strings or an ArrayList of Strings. In its simplest form each String contains 
a single column name, or several column names separated by semi-colons or 
commas.  

For example, to retrieve the information for both the NamFirst and NamLast 
columns, you would do one of: 
Module parties = new Module("eparties", mySession); 
String columns = "NamFirst;NamLast"; 
parties.fetch("start", 0, 1, columns); 

-OR- 
String[] columns = 
{ 
 "NamFirst", 
 "NamLast" 
}; 
parties.fetch("start", 0, 1, columns); 

-OR- 
import java.util.Arraylist; 
… 
ArrayList<String> columns = new ArrayList<String>(); 
columns.add("NamFirst"); 
columns.add("NamLast"); 
parties.fetch("start", 0, 1, columns); 

 



Accessing an EMu Module 
 

 

 

 Page 21 
 

Return Values 

The fetch method returns records requested in a ModuleFetchResult object. 
This object contains three read-only properties: 

• count (an int, accessed using getCount()) 
• hits (a long, accessed using getHits()) 
• rows (a Map[], accessed using getRows()) 

The count property  is the number of records returned by the fetch request. 

The hits property is the estimated number of matches in the result set. This 
number is returned for each fetch because the estimate can decrease as records in 
the result set are processed by the fetch method. 

The rows property is an array containing the set of records requested. Each 
element of the rows array is itself a Map object. Each Map object contains entries 
for each column requested. 

The IMu Map class is a subclass of Java’s standard HashMap. It defines its key 
type to be String. It also provides some convenience methods for converting the 
types of elements stored in the map. See Reference (page 57) for details. 

The following example shows a simple search of the EMu Parties module using 
findTerms with fetch used to retrieve a set of records: 



Accessing an EMu Module 
 

 

 

Page 22  
 

 

import com.kesoftware.imu.*; 
… 
try 
{ 
 Session mySession = new Session("server.com", 12345); 
 
 Module parties = new Module("eparties", mySession); 
 
 // Find all party records where Last Name contains 'smith' 
 Terms search = new Terms(); 
 search.add("NamLast", "Smith"); 
 long hits = parties.findTerms(search); 
 
 // We want to fetch the irn, NamFirst and NamLast 
 // columns for each record. 
 String[] columns = 
 { 
  "irn", 
  "NamFirst", 
  "NamLast" 
 }; 
 
 // Fetch the first three records (at most) from the start 
 // of the result set. 
 ModuleFetchResult result = parties.fetch("start", 0, 3, 
  columns); 
 System.out.format("count: %d%n", result.getCount()); 
 System.out.format("hits: %d%n", result.getHits()); 
 System.out.format("rows:%n"); 
 Map[] rows = result.getRows(); 
 for (int i = 0; i < rows.length; i++) 
 { 
  Map row = rows[i]; 
  int rownum = row.getInt("rownum"); 
  long irn = row.getLong("irn"); 
  String first = row.getString("NamFirst"); 
  String last = row.getString("NamLast"); 
 
  System.out.format("  [%d]%n", i); 
  System.out.format("  rownum: %d%n", rownum); 
  System.out.format("  irn: %d%n", irn); 
  System.out.format("    NamFirst: %s%n", first); 
  System.out.format("   NamLast: %s%n", last); 
 } 
} 
catch (Exception e) 
{ 
 … 
} 



Accessing an EMu Module 
 

 

 

 Page 23 
 

 

The output of this code will be similar to: 
count: 3 
hits: 12 
rows: 
  [0] 
    rownum: 1 
    irn: 722 
    NamFirst: Chris 
    NamLast: SMITH 
  [1] 
    rownum: 2 
    irn: 723 
    NamFirst: Brad 
    NamLast: Smith 
  [2] 
    Rownum: 3 
    irn: 724 
    NamFirst: Sylvia 
    NamLast: Smith 

Notice that data for each row includes the irn, NamFirst and NamLast elements, 
which correspond to the columns requested. Also notice that a rownum element is 
included. This element contains the number of the record within the result set 
(starting from 1) and is always included in the retrieved records. 

Nested tables are returned as arrays of Strings. For example, if a columns 
argument of: 
"NamLast;NamFirst;NamRoles_tab" 

is passed, the loop from the previous example can be modified as follows: 
for (int i = 0; i < rows.length; i++) 
{ 
 Map row = rows[i]; 
 … 
 String[] roles = row.getStrings("NamRoles_tab"); 
 for (int j = 0; j < roles.length; j++) 
  System.out.format("    NamRoles_tab[%d]: %s%n", j, roles[j]); 
} 

The output of this code will be similar to: 
rows: 
  [0] 
    rownum: 1 
    irn: 722 
    NamFirst: Chris 
    NamLast: SMITH 
    NamRoles_tab[0]: Lyricist 
    NamRoles_tab[1]: Pianist 
… 

 



Accessing an EMu Module 
 

 

 

Page 24  
 

Attachments 

The set of columns requested can be more than simple column names. Columns 
from modules which the current record attaches to can also be requested. For 
example, suppose that the Catalogue module documents the creator of an object as 
an attachment (to a record in the Parties module) in a column called 
CatCreatorRef. If the Catalogue module is searched, it is possible to get the 
creator's last name for each Catalogue record in the result set as follows: 
"CatCreatorRef.NamLast" 

This technique can be extended to get information for more than one column: 
"CatCreatorRef.(NamTitle;NamLast;NamFirst)" 

The values are returned in a nested Map: 
for (int i = 0; i < rows.length; i++) 
{ 
 Map row = rows[i]; 
 … 
 Map creator = row.getMap("CreCreatorRef"); 
 String first = creator.getString("NamFirst"); 
 String last = creator.getString("NamLast"); 
 
 System.out.format("  Creator First Name %s%n", first); 
 System.out.format("  Creator Last Name %s%n", last); 
} 

 



Accessing an EMu Module 
 

 

 

 Page 25 
 

Reverse Attachments 

In addition to standard attachment columns, it is possible to request information 
from so-called reverse attachments. A reverse attachment refers to one or more 
records which attach to the current record.  

For example, to retrieve information from a set of Catalogue records which attach 
to the current Parties record via the Catalogue's CatCreatorRef column, specify: 
"<ecatalogue:CatCreatorRef>.(irn,TitMainTitle)" 

The following code fragment retrieves Parties IRN 53 and displays the 
CatCreatorRef reverse attachments: 
Module parties = new Module("eparties", session); 
long hits = parties.findKey(53); 
 
String[] columns = 
{ 
 "irn", 
 "NamFirst", 
 "NamLast", 
 "<ecatalogue:CatCreatorRef>.(irn,TitMainTitle)" 
}; 
 
ModuleFetchResult result = parties.fetch("start", 0, 1, columns); 

The reverse attachments are returned as an array of Maps: 
Map[] rows = result.getRows(); 
for (int i = 0; i < rows.length; i++) 
{ 
 Map row = rows[i]; 
 … 
 Map[] att = row.getMaps("ecatalogue:CatCreatorRef"); 
 for (int j = 0; j < att.length; j++) 
 { 
  System.out.format("Row %d, Reverse Attachment %d%n", i, j); 
 
  String title = att[j].getString("TitMainTitle"); 
 
  System.out.format("  title: %s%n", title); 
 } 
} 

 



Accessing an EMu Module 
 

 

 

Page 26  
 

Rename a Column 

It is possible to rename any column when it is returned by adding the new name in 
front of the real column being requested, followed by an equals sign. 

For example, to request data from the NamLast column but rename it as 
last_name, specify: 
"last_name=NamLast" 

The returned Map will contain an element called last_name rather than NamLast. 

This is particularly useful for complicated reverse attachment names: 
"objects=<ecatalogue:CatCreatorRef>.(SummaryData)" 

 



Accessing an EMu Module 
 

 

 

 Page 27 
 

Grouping a set of nested table columns 

A set of nested table columns can be grouped. Grouping allows the association 
between the columns to be reflected in the structure of the data returned. Consider 
the Contributors grid on the Details tab of the Narratives module, which 
contains two columns: 

• NarContributorRef_tab 
which contains a set of attachments to records in the Parties module. 

• NarContributorRole_tab 
which contains the roles for the corresponding contributors. 

Each column can be retrieved separately as follows: 
Module narratives = new Module("enarratives", mySession); 
 
narratives.findKey(2); 
 
String[] columns = 
{; 
 "irn", 
 "NarTitle", 
 "NarContributorRef_tab.SummaryData", 
 "NarContributorRole_tab" 
}; 
 
ModuleFetchResult result = narratives.fetch("start", 0, 1, 
 columns); 
Map[] rows = result.getRows(); 
for (int i = 0; i < rows.length; i++) 
{ 
 Map row = rows[i]; 
 
 Maps[] names = row.getMaps("NarContributorRef_tab"); 
 for (int j = 0; j < names.length; j++) 
 { 
  String summary = names[j].getString("SummaryData"); 
  System.out.format("Name %d: %s%n", j, summary); 
 } 
 
 String[] roles = row.getStrings("NarContributorRole_tab"); 
 for (int j = 0; j < roles.length; j++) 
  System.out.format("Role %d: %s%n", j, roles[j]); 
} 

This produces output such as: 
Name 0: Rising, John 
Name 1: Graham, Beverley 
Role 0: Artist 
Role 1: Author 

Although this works fine, the relationship between the contributor and his or her 
role is unclear. Grouping can make the relationship far clearer. 

To group the columns, surround them with square brackets: 
"[NarContributorRef_tab.SummaryData,NarContributorRole_tab]" 



Accessing an EMu Module 
 

 

 

Page 28  
 

With this single change the previous code fragment looks like this: 
String[] columns = 
{; 
 "irn", 
 "NarTitle", 
 "[NarContributorRef_tab.SummaryData,NarContributorRole_tab]" 
}; 
 
ModuleFetchResult result = narratives.fetch("start", 0, 1, 
 columns); 
Map[] rows = result.getRows(); 
for (int i = 0; i < rows.length; i++) 
{ 
 Map row = rows[i]; 
 
 Map[] group = row.getMaps("group1"); 
 for (int j = 0; j < group.length; j++) 
 { 
  Map contrib = group[j].getMap("NarContributorRef_tab"); 
  String name = contrib.getString("SummaryData"); 
 
  String role = group[j].getString("NarContributorRole_tab"); 
 
  System.out.format("Contributor %d: Name %s; Role %s%n", j, 
   name, role); 
 } 
} 

This produces output such as: 
Contributor 0: Name Rising, John; Role Artist 
Contributor 1: Graham, Beverley; Role Author 

By default, the group is given a name of group1, group2 and so on, which can be 
changed easily enough: 
"contributors=[NarContributorRef_tab.SummaryData, 
 NarContributorRole_tab]" 

 



Accessing an EMu Module 
 

 

 

 Page 29 
 

Column Sets 

Every time fetch is called and a set of columns to retrieve is passed, the IMu 
server must parse these columns and check them against the EMu schema. For 
complex column sets, particularly those involving several references or reverse 
references, this can take time. 

If fetch will be called several times with the same set of columns, it is a good 
idea to register the set of columns once and then simply pass the name of the 
registered set each time fetch is called. 

Module’s addFetchSet method is used to register a set of columns. This method 
takes two arguments: 

• The name of the column set. 
• The set of columns to be associated with that name. 

For example: 
String[] columns = 
{ 
 "irn", 
 "NamFirst", 
 "NamLast" 
}; 
parties.addFetchSet("PersonDetails", columns); 

This registers the set of columns with the IMu server and gives it the name 
PersonDetails. This name can then be passed to any call to fetch and the same 
set of columns will be returned: 
parties.fetch("start", 0, 5, "PersonDetails"); 

More than one set can be registered at once using addFetchSets. Simply build an 
associative array containing each set: 
Map sets = new Map(); 
sets.put("PersonDetails", "irn;NamFirst;NamLast"); 
sets.put("OrganisationDetails", "irn;NamOrganisation"); 
parties.addFetchSets(sets); 

Using column sets is very useful when maintaining state (page 47). 
 



Accessing an EMu Module 
 

 

 

Page 30  
 

A Simple Example 
In this example we build a simple command-line based Java program to search the 
Parties module by Last Name and display the full set of results. The name to be 
searched for will be passed to the program as a command-line argument: 



Accessing an EMu Module 
 

 

 

 Page 31 
 

 

import com.kesoftware.imu.*; 
 
public class Example 
{ 
 public static void 
 main(String[] args) 
 { 
  if (args.length != 1) 
  { 
   System.err.format("Usage: example name%n"); 
   System.exit(1); 
  } 
  try 
  { 
   process(args[0]); 
  } 
  catch (IMuException e) 
  { 
   System.err.format("Sorry, an error occurred: %s%n", e); 
   System.exit(1); 
  } 
 } 
  
 private static void 
 process(String lastName) throws IMuException 
 { 
  Session mySession = new Session("server.com", 40999); 
  mySession.connect(); 
  Module parties = new Module("eparties", mySession); 
   
  // Build search term and run search  
  Terms search = new Terms(); 
  search.add("NamLast", lastName); 
  long hits = parties.findTerms(search); 
   
  // Build list of columns to fetch  
  String[] columns = 
  { 
   "NamFirst", 
   "NamLast" 
  }; 
   
  // Fetch all the matches in one go by passing count < 0  
  ModuleFetchResult result = parties.fetch("start", 0, -1, 
    columns); 
   
  // Display the results  
  System.out.format("Number of matches: %d%n", 
   result.getHits()); 
  Map[] rows = result.getRows(); 
  for (int i = 0; i < rows.length; i++) 
  { 
   long rownum = rows[i].getLong("rownum"); 
   String first = rows[i].getString("NamFirst"); 
   String last = rows[i].getString("NamLast"); 
   System.out.format("%d: %s %s%n", rownum, first, last); 
  } 
 } 
} 



Accessing an EMu Module 
 

 

 

Page 32  
 

The results generated look like this: 
Number of matches: 5 
1: Percy JONES 
2: Marilyn JONES 
3: Lee Jones 
4: David Jones 
5: William Jones 

 



Accessing an EMu Module 
 

 

 

Sorting 
The matching set of results can be sorted using Module's sort method. This 
method takes two arguments: 

• keys 
• flags 

 

keys 
The columns argument is used to specify the columns by which to sort the result 
set. The argument can be either a simple String, an array of Strings or an 
ArrayList of Strings. Each string can be a simple column name or a set of 
column names, separated by semi-colons or commas. Each column name can be 
preceded by a + or –. A leading + indicates that the records should be sorted in 
ascending order. A leading – indicates that the records should be sorted in 
descending order. 

For example, to sort a set of Parties records first by Party Type (ascending), then 
Last Name (descending) and then First Name (ascending): 
String keys = "+NamPartyType;-NamLast;+NamFirst"; 

-OR- 
String keys[] = 
{ 
 "+NamPartyType", 
 "-NamLast", 
 "+NamFirst" 
}; 

-OR- 
ArrayList<String> keys = new ArrayList<String>(); 
keys.add("+NamPartyType"); 
keys.add("-NamLast"); 
keys.add("+NamFirst"); 

 

 If a sort order (+ or -) is not given, the sort order defaults to ascending. 
 

 Page 33 
 



Accessing an EMu Module 
 

 

 

Page 34 

flags 

The flags argument is used to pass one or more flags to control the way the sort 
is carried out. As with the keys argument, the flags argument can be a simple 
String, an array of Strings or an ArrayList of Strings. Each string can be a 
single flag or a set of flags separated by semi-colons or commas. 

 

The following flags control the type of comparisons used when sorting: 

"word-based" sort disregards all punctuation and white spaces (more than the one 
space between words). For example: 
Traveler's        Inn 
will be sorted as 
Travelers Inn 

"full-text" sort includes all punctuation and white spaces. For example: 
Traveler's        Inn 
will be sorted as 
Traveler's        Inn 
and will therefore differ from: 
Traveler's   Inn 

"compress-
spaces" 

sort includes punctuation but disregards all white space (with the 
exception of a single space between words). For example: 
Traveler's        Inn 
will be sorted as 
Traveler's Inn 

 If none of these flags is included, the comparison defaults to "word-based".

 
 



Accessing an EMu Module 
 

 

 

 Page 35 
 

 

The following flags modify the sorting behaviour: 

"case-
sensitive" 

sort is sensitive to upper and lower case. For example: 
Melbourne gallery 
will be sorted separately to 
Melbourne Gallery 

"order-
insensitive" 

Values in a multi-value field will be sorted alphabetically regardless 
of the order in which they display. For example, a record which has 
the following values in the NamRoles_tab column in this order: 
Collection Manager 
Curator 
Internet Administrator 
and another record which has the values in this order: 
Internet Administrator 
Collection Manager 
Curator 
will be sorted the same. 

"null-low" Records with empty records will be placed at the start of the result 
set rather than at the end. 

"extended-
sort" 

Values that include diacritics will be sorted separately to those that 
do not. For example, entrée will be sorted separately to entree. 



Accessing an EMu Module 
 

 

 

Page 36  
 

 

The following flags can be used when generating a summary of the sorted records: 

"report" A summary of the sort is generated. The summary is contained in a 
ModuleSortResult object. The result is hierarchically structured, 
summarising the number of records which match each of the sort 
keys. See the example (page 38) for an illustration of the structure. 

"table-as-
text" 

All data from multi-valued columns will be treated as a single value 
(joined by line break characters) in the summary results array. 
For example, for a record which has the following values in the 
NamRoles_tab column: 
Collection Manager, Curator, Internet Administrator 
the summary will include statistics for a single value: 
Collection Manager 
Curator 
Internet Administrator 
Thus the number of values in the summary results display will match 
the number of records. 
If this option is not included, each value in a multi-valued column 
will be treated as a distinct value in the summary. Thus there may be 
many more values in the summary results than there are records. 

 
 



Accessing an EMu Module 
 

 

 

 Page 37 
 

Return Value 

The sort method returns null unless the report flag is used. 

If the report flag is used, the sort method returns a ModuleSortResult object. 
This object contains two read-only properties: 

• count (an int, accessed using getCount()). 
• terms (an array of ModuleSortTerm objects, accessed using getTerms()). 

The count property is the number of distinct terms in the primary sort key. 

The terms property is an array containing the list of distinct terms associated with 
the primary key in the sorted result set. 

Each element in the terms array is a ModuleSortTerm object. This object contains 
three read-only properties which describe the term: 

• value (a String, accessed using getValue()). 
• count (a long, accessed using getCount()). 
• nested (a ModuleSortResult object, accessed using getNested()). 

The value property is the distinct value itself. 

The count property is the number of records in the result set which have this 
value. 

The nested property is a nested ModuleSortResult object. This holds values for 
secondary sorts within the primary sort. This is illustrated in the following 
example: 

 



Accessing an EMu Module 
 

 

 

Page 38  
 

Example 
In this example we run a three-level sort on a set of Parties records, sorting first by 
Party Type, then Last Name (descending) and then by First Name. Setting up and 
running the sort is straightforward: 
Module parties = new Module("eparties", …); 
… 
parties.findTerms(…); 
… 
String[] keys = 
{ 
 "+NamPartyType", 
 "-NamLast", 
 "+NamFirst" 
}; 
String[] flags = 
{ 
 "full-text", 
 "case-sensitive", 
 "report" 
}; 
ModuleSortResult result = parties.sort(keys, flags); 

We can write a simple method to display the result summary. This example 
displays the distinct terms (and their counts) for the primary sort key (Party Type). 
Nested within each primary term is the set of distinct terms for the secondary key 
(Last Name) and nested within this list is the set of distinct terms for the tertiary 
key (First Name). 

This is most simply done by making the display method recursive. The 
showSummary method below illustrates how to walk the ModuleSortResult 
structure: 



Accessing an EMu Module 
 

 

 

 Page 39 
 

 

private void 
showSummary(ModuleSortResult result, int indent) 
{ 
 // Build a prefix string to indent the data correctly  
 String prefix = ""; 
 for (int i = 0; i < indent; i++) 
  prefix += "  "; 
  
 // Display each term at this level  
 ModuleSortTerm[] terms = result.getTerms(); 
 for (int i = 0; i < terms.length; i++) 
 { 
  ModuleSortTerm term = terms[i]; 
 
  // Get the value and count properties for the term  
  String value = term.getValue(); 
  int count = term.getCount(); 
 
  // Print them out, indented appropriately  
  System.out.format("%s%2d. \"%s\" (%d)%n", 
   prefix, i, value, count); 
 
  // If the nested property is defined then there are 
  // further values for secondary, tertiary keys and so on 
  // so we call showSummary recursively. 
  ModuleSortResult nested = term.getNested(); 
  if (nested != null) 
   showSummary(nested, indent + 1); 
 } 
} 

This will produce output similar to the following: 
"Person" (2086) 
  0. "Young" (4) 
    0. "Derek" (1) 
    1. "Don" (1) 
    … 
  1. "Williams" (5) 
    0. "Arthur" (1) 
    1. "John" (2) 
… 

 





Multimedia 
 

 

 

S E C T I O N  5  

Multimedia 
The multimedia resources associated with an EMu record can be retrieved using 
Module's fetch method by specifying a special column called multimedia. 
When this column is requested the server returns the set of multimedia 
attachments associated with the record in question. 

The set is returned as an array of Map objects. Each map includes the following 
information: 

• irn 
The irn of the resource in EMu's Multimedia module. 

• type 
The media type: typically image, audio, video, etc. 

• format 
The media format or sub-type such as jpeg or tiff for image formats, wav or 
mpeg for audio. 

This is equivalent to the column request: 
multimedia=MulMultiMediaRef_tab. 
( 
 irn, 
 type=MulMimeType, 
 format=MulMimeFormat 
) 

with the addition that the result does not contain any empty entries (i.e. entries 
corresponding to null values in the MulMultiMediaRef_tab column) or any entries 
for Multimedia records which are not accessible via IMu. 

For example: 
Session mySession = new Session("server.com", 40999); 
mySession.connect(); 
 
Module parties = new Module("eparties", mySession); 
 
// Build the search and run it  
Terms search = new Terms(); 
search.add("NamLast", "Pavarotti"); 
parties.findTerms(search); 
   
// Build list of columns to fetch  
String[] columns = 
{ 
 "NamFirst", 
 "NamLast", 
 "multimedia" 
}; 
   

 Page 41 
 



Multimedia 
 

 

 

Page 42  
 

// We are only interested in the first record  
ModuleFetchResult result = parties.fetch("start", 0, 1, columns); 
Map[] rows = result.getRows(); 
Map row = rows[0]; 
 
// Display the results  
String first = row.getString("NamFirst"); 
String last = row.getString("NamLast"); 
Map[] multimedia = row.getMaps("multimedia"); 
 
System.out.format("First Name: %s%n", first); 
System.out.format("Last Name: %s%n", last); 
System.out.format("multimedia (%d)%n", multimedia.length); 
for (int i = 0; i < multimedia.length; i++) 
{ 
 Map entry = multimedia[i]; 
  
 long irn = entry.getLong("irn"); 
 String type = entry.getString("type"); 
 String format = entry.getString("format"); 
  
 System.out.format("  irn %d: %s/%s%n", irn, type, format); 
} 

will produce out such as: 
First Name: Luciano 
Last Name: PAVAROTTI 
multimedia (11) 
  irn 100096: image/gif 
  irn 100100: image/gif 
  irn 100101: image/gif 
  irn 100102: image/gif 
  irn 100105: image/jpeg 
  irn 100095: video/quicktime 
  irn 100103: video/quicktime 
  irn 100098: audio/wav 
  irn 100099: audio/wav 
  irn 100104: audio/wav 
  irn 100097: application/msword 

The multimedia column is an example of an IMu "virtual" column. The column 
does not actually exist in the EMu table being accessed. Instead, the IMu server 
interprets the request for the column and builds an appropriate response. There are 
other virtual columns that can be used when accessing a record's multimedia 
attachments: 
• images 

This returns the subset of multimedia attachments which have a mime type of 
image. Like multimedia, this is returned as an array of Map objects. 

• image 
The preferred image from the set of images. Currently this is the same as the 
first entry in the array returned by images. However, future versions of EMu 
may allow another multimedia attachment to be flagged as the preferred 
image, in which case the image column will return information for the 
preferred resource, rather than the first one. This is returned as a single Map 
object. 



Multimedia 
 

 

 

 Page 43 
 

• videos 
This returns the subset of multimedia attachments which have a mime type of 
video. 

• video 
The preferred video from the set of videos. Currently this is the same as the 
first entry in the array returned by videos. 

All these virtual columns act as reference columns into the Multimedia module. 
This means that other Multimedia columns can also be requested from the 
corresponding Multimedia record. For example, to include the publisher 
(DetPublisher) in the information returned for each attached multimedia resource: 
multimedia.DetPublisher 

The returned Maps will include a DetPublisher entry as well as the standard 
irn, type and format entries. 

Any standard columns from the Multimedia module can be requested in this way. 
In addition, the Multimedia module includes a virtual column, resource, which 
can be used get access to the contents of the actual multimedia resource. The 
resource column is returned as a Map object. The object includes the following 
information: 

• identifier 
The contents of the multimedia record's MulIdentifier field. 

• mimeType 
The media type: typically image, audio, video, etc. 

• mimeFormat 
The media format or sub-type such as jpeg or tiff for image formats, wav or 
mpeg for audio. 

• size 
The size of the resource in bytes. 

• file 
A TempInputStream object. This provides a read-only handle to a temporary 
copy of the resource itself. The TempInputStream class is an IMu-specific 
subclass of Java's standard FileInputStream and the standard input methods 
can be used to read the contents of the resource. The temporary copy of the 
file is discarded when the stream is closed or destroyed. 

• height 
For images, the height of the image in pixels. 

• width 
For images, the width of the image in pixels. 

The following code fragment retrieves Parties IRN 53, displays the information 
for its preferred attached image and creates a copy of the resource in a file called 
image-copy: 



Multimedia 
 

 

 

Page 44  
 

Module parties = new Module("eparties", mySession); 
long hits = parties.findKey(53); 
 
String[] columns = 
{ 
 "NamFirst", 
 "NamLast", 
 "image.resource" 
}; 
 
ModuleFetchResult result = parties.fetch("start", 0, 1, columns); 
… 
Map[] rows = result.getRows(); 
 
// Because we did a findKey() search, we are only 
// interested in the first row. 
Map row = rows[0]; 
 
Map image = row.getMap("image"); 
Map resource = image.getMap("resource"); 
 
// Print out information about the resource 
String identifier = resource.getString("identifier"); 
String mimeType = resource.getString("mimeType"); 
String mimeFormat = resource.getString("mimeFormat"); 
long size = resource.getLong("size"); 
 
System.out.format("identifier: %s%n", identifier); 
System.out.format("mimeType: %s%n", mimeType); 
System.out.format("mimeFormat: %s%n", mimeFormat); 
System.out.format("size: %d%n", size); 
 
// Save a copy of the resource 
FileInputStream temp = (FileInputStream) resource.get("file"); 
FileOutputStream copy = new FileOutputStream("image-copy"); 
byte[] buffer = new byte[4096]; // 4K buffer 
while (temp.read(buffer) > 0) 
 copy.write(buffer); 
copy.close(); 

This will produce output similar to: 
identifier: LucianoPavarotti.gif 
mimeType: image 
mimeFormat: gif 
size: 19931 

as well as creating a file called image-copy which contains the copy of the image 
itself. 

The previous example retrieves a binary copy of the master resource in its original 
format. It is also possible to modify how the resource is returned. This is done by 
adding modifiers to the resource column request. Modifiers are added after the 
column name and inside a set of braces. 



Multimedia 
 

 

 

 Page 45 
 

The modifiers which can be applied to the resource column are: 

• encoding 
Specifies that the resource returned should be encoded. The only currently 
supported encoding is base64. By default the resource is returned as raw 
binary data. 
Example: 

  resource{encoding:base64} 

• checksum 
Specifies that the information returned with the resource should include a 
checksum. The checksum requested can be crc32 or md5. 
Example: 

  resource{checksum:crc32} 

In addition other modifiers can be applied to image resources: 

• format 
Specifies the format of the required image. If the master image is already in 
the required format, then it is returned. Otherwise the image is reformatted 
on-the-fly and the reformatted image is returned. 
Example: 

  resource{format:gif} 

This requests that the imaged is returned as a gif. 
The IMu server uses ImageMagick to process the image and the range of 
supported formats is very large. The complete list is available from: 
http://www.imagemagick.org/script/formats.php 

• height 
Specifies the height of the image required in pixels. If the record contains a 
resolution with this height, this resolution is returned. Otherwise the closest 
matching larger resolution is resized to the requested height on-the-fly and the 
resized image is returned. 
Example: 

  resource{height:200} 

• width 
Specifies the width of the image required in pixels. If the record contains a 
resolution with this width, this resolution is returned. Otherwise the closest 
matching larger resolution is resized to the requested width on-the-fly and the 
resized image is returned. 
Example: 

  resource{width:300} 

• bestfit 
If set to yes, the image returned is the existing resolution which most closely 
matches the specified height or width. No on-the-fly resizing is done. 
Example: 

  resource{height:300,bestfit:yes} 

This returns the image closest to, but larger than, 300 pixels high. 



Multimedia 
 

 

 

Page 46  
 

• aspectratio 
Controls whether the image's aspect ratio should be maintained when both a 
height and a width are specified. If set to no, the aspect ratio is not 
maintained. 
Example: 

  resource{height:300,width:300,aspectratio:no} 

• source 
Controls which image is used as the basis for any reformatting that is 
required. 
By default, if no height or width is specified, the master is used as the source 
image. However, if a height or width is supplied, then by default the closest 
sized but larger resolution is used as the source. This saves processing time 
but may not produce the best result when dealing with lossy formats (such as 
jpeg). To override this, a source value of master can be specified. 
Example: 

  resource{height:300,source:master} 

This specifies that the image is generated by resizing the master to 300 pixels 
high, rather than by using any appropriate resolution. 
The source value can also be thumbnail. In this case the image thumbnail is 
used as the source. Typically you would not want to apply size 
transformations to the thumbnail but this provides a simple way of retrieving 
the image's 90x90 thumbnail: 

  resource{source:thumbnail} 
 



Maintaining State 
 

 

 

S E C T I O N  6  

Maintaining State 
One of the biggest drawbacks of the earlier example (page 30) is that it fetches the 
full set of results at one time, which is impractical for large result sets. It is more 
practical to display a full set of results across multiple pages and allow the user to 
move forward or backward through the pages. 

This is simple in a conventional application where a connection to the server is 
maintained until the user terminates the application. In a web implementation 
however, this seemingly simple requirement involves a considerably higher level 
of complexity due to the stateless nature of web pages. One such complexity is 
that each time a new page of results is displayed, the initial search for the records 
must be re-executed. This is inconvenient for the web programmer and potentially 
slow for the user. 

The IMu server provides a solution to this. When a handler object is created, a 
corresponding object is created on the server to service the handler's request: this 
server-side object is allocated a unique identifier by the IMu server. When making 
a request for more information, the unique identifier can be used to connect a new 
handler to the same server-side object, with its state intact. 

The following example illustrates the connection of a second, independently 
created Module object to the same server-side object: 
// Create a module object as usual  
Module first = new Module("eparties", session); 
 
// Run a search - this will create a server-side object  
long[] keys = { 1, 2, 3, 4, 5, 42 }; 
first.findKeys(keys); 
 
// Get a set of results  
ModuleFetchResult result1 = first.fetch("start", 0, 2, 
 "SummaryData"); 
 
// Create a second module object  
Module second = new Module("eparties", session); 
 
// Attach it to the same server-side object as the 
// first module. This is the key step. 
second.setID(first.getID()); 
 
// Get a second set of results from the same search  
ModuleFetchResult result2 = second.fetch("current", 1, 2, 
 "SummaryData"); 

Although two completely separate Module objects have been created, they are 
each connected to the same server-side object by virtue of having the same id 
property. This means that the second fetch call will access the same result set as 
the first fetch. Notice that a flag of current has been passed to the second call. 

 Page 47 
 



Maintaining State 
 

 

 

Page 48  
 

The current state is maintained on the server-side object, so in this case the 
second call to fetch will return the third and fourth records in the result set. 

While this example illustrates the use of the id property, it is not particularly 
realistic as it is unlikely that two distinct objects which refer to the same server-
side object would be required in the same piece of code. The need to re-connect to 
the same server-side object when generating another page of results is far more 
likely. This situation involves creating a server-side Module object (to search the 
module and deliver the first set of results) in one request and then re-connecting to 
the same server-side object (to fetch a second set of results) in a second request. 
As before, this is achieved by assigning the same identifier to the id property of 
the object in the second page, but two other things need to be considered. 

By default the IMu server destroys all server-side objects when a session finishes. 
This means that unless the server is explicitly instructed not to do so, the server-
side object may be destroyed when the connection from the first page is closed. 
Telling the server to maintain the server-side object only requires that the destroy 
property on the object is set to false before calling any of its methods. In the 
example above, the server would be instructed not to destroy the object as follows: 
Module module = new Module("eparties", session); 
module.setDestroy(false); 
long[] keys = { 1, 2, 3, 4, 5, 42 }; 
module.findKeys(keys); 

The second point is quite subtle. When a connection is established to a server, it is 
necessary to specify the port to connect to. Depending on how the server has been 
configured, there may be more than one server process listening for connections 
on this port. Your program has no control over which of these processes will 
actually accept the connection and handle requests. Normally this makes no 
difference, but when trying to maintain state by re-connecting to a pre-existing 
server-side object, it is a problem. 

For example, suppose there are three separate server processes listening for 
connections. When the first request is executed it connects, effectively at random, 
to the first process. This process responds to the request, creates a server-side 
object, searches the Parties module for the terms provided and returns the first set 
of results. The server is told not to destroy the object and passes the server-side 
identifier to another page which fetches the next set of results from the same 
search. 

The problem comes when the next page connects to the server again. When the 
connection is established any one of the three server processes may accept the 
connection. However, only the first process is maintaining the relevant server-side 
object. If the second or third process accepts the connection, the object will not be 
found. 

The solution to this problem is relatively straightforward. Before the first request 
closes the connection to its server, it must notify the server that subsequent 
requests need to connect explicitly to that process. This is achieved by setting the 
Session object's suspend property to true prior to submitting any request to 
the server: 



Maintaining State 
 

 

 

 Page 49 
 

Session session = new Session("server.com", 12345); 
Module module = new Module("eparties", session); 
… 
session.setSuspend(true); 
module.findKeys(…); 

The server handles a request to suspend a connection by starting to listen for 
connections on a second port. Unlike the primary port, this port is guaranteed to be 
used only by that particular server process. This means that a subsequent page can 
reconnect to a server on this second port and be guaranteed of connecting to the 
same server process. This in turn means that any saved server-side object will be 
accessible via its identifier. After the request has returned (in this example it was a 
call to findKeys), the Session object's port property holds the port number to 
reconnect to: 
session.setSuspend(true); 
module.findKeys(…); 
int reconnect = session.getPort(); 

 



Maintaining State 
 

 

 

Page 50  
 

Example 
Although this may appear to be a little complicated, it is not in fact too difficult to 
manage in practice. 

To illustrate we'll create a simple JSP-based website to display the list of matching 
names in blocks of five records per page. We'll provide simple Next and Prev 
links to allow the user to move through the results, and we will use some more GET 
parameters to pass the port we want to reconnect to, the identifier of the server-
side object and the rownum of the first record to be displayed. 

The main code is in results.jsp. 

Rather than use a try/catch block, we specify an error page to catch exceptions 
(we will need a suitable error handling page - see below). 

First we import the IMu libraries and set the error page directive: 
<%@ page import="com.kesoftware.imu.*" 
 errorPage="exceptionHandler.jsp" %> 

Next we create the IMuSession object (do not call it session or it will clash with 
the existing JSP HttpSession object named session): 
// create new session object  
final Session imuSession = new Session(); 
imuSession.setHost(imuHost); 

We set the port property to a standard value unless a port parameter has been 
passed in the URL: 
if (request.getParameter("port") != null) 
   imuPort = Integer.parseInt(request.getParameter("port")); 
imuSession.setPort(imuPort); 

Next we connect to the server. We immediately set the suspend property to true 
to tell the server that we may want to connect again (this ensures the server listens 
on a new, unique port): 
// Establish connection and tell the server 
** we may want to re-connect 
 
imuSession.connect(); 
imuSession.setSuspend(true); 

We then create the client-side IMuModule object and set its destroy property to 
false, ensuring the server will not destroy it: 
 
final Module module = new Module("eparties", imuSession); 
module.setDestroy(false); 

If the URL includes a name parameter, we need to do a new search. Alternatively, 
if it includes an id parameter, we need to connect to an existing server-side object: 



Maintaining State 
 

 

 

 Page 51 
 

Long hits = 0L; 
if (request.getParameter("name") != null) 
{ 
 final Terms searchTerms = new Terms(TermsKind.OR); 
 searchTerms.add("NamLast", request.getParameter("name"), 
  "matches"); 
 hits = module.findTerms(searchTerms); 
} 
 
// Otherwise, if id is supplied reattach to 
** existing server-side object 
 
else if (request.getParameter("id") != null) 
 module.setID(request.getParameter("id")); 
 
// Otherwise, we can't process  
else 
 throw new Exception("no name or id"); 
 

As usual, we build a list of columns to fetch: 
final String[] columns = { "NamFirst", "NamLast" }; 

If the URL includes a rownum parameter, fetch records starting from there. 
Otherwise start from record number 1: 
// Work out which block of records to fetch  
int rownum = 1; 
if (request.getParameter("rownum") != null) 
 rownum = Integer.parseInt(request.getParameter("rownum")); 

Fetch the records: 
// Fetch next five records  
final ModuleFetchResult result =  
 module.fetch("start", (rownum - 1), 5, columns); 
 
// Save rows in convenient variable 
** for later display 
 
final Map[] rows = result.getRows(); 
final Integer port = imuSession.getPort(); 
final String id = module.getID(); 

Now we can build the main page. 



Maintaining State 
 

 

 

Page 52  
 

<body> 
 <!-- show hit count --> 
 <p>Number of matches: <% out.print(hits); %></p> 
 <table> 
  <% 
   // Display each match in a separate row in a table  
   for (int i = 0; i < rows.length; i++) 
   { 
    final Map row = rows[i]; 
    Long rnum = row.getLong("rownum"); 
    out.println("<tr>"); 
    out.println("\t<td>" + rnum.toString() + "</td>"); 
    out.println("\t<td>" +  
     row.getString("NamFirst") +  
     " " + row.getString("NamFirst") + 
     "</td"); 
    out.println("</tr>"); 
   } 
  %> 
 </table> 
… 

Finally we add the Prev and Next links to allow the user to page backwards and 
forwards through the results. This is the most complicated part! First, we want to 
ensure that we connect to the same server and server-side object, so we add the 
appropriate port and id parameters to our URL: 
 <% 
  // Add the Prev and Next links  
  String url = request.getRequestURL().toString(); 
  url += "?port=" + port; 
  url += "&id=" + id; 
  … 

If we are not already showing the first record, we add a Prev link to allow the user 
to go back one page in the result set: 
  final Map first = rows[0]; 
  final Long firstRowNum = first.getLong("rownum"); 
 
  // If we are not already showing the first record, 
  ** we add a Prev link 
   
  if (firstRowNum > 1) 
  { 
   Long prev = (firstRowNum - 5); 
   if (prev < 1L) 
    prev = 1L; 
   final String prevLink = url + "&rownum=" + prev; 
   out.println("<a href=\"" +  
    url +  "&rownum=" + prev + "\">Prev</a>"); 
  } 

Similarly, if we are not already showing the last record, we add a Next link to 
allow the user to go forward one page: 



Maintaining State 
 

 

 
  final Map last = rows[rows.length - 1]; 
  final Long lastRowNum = last.getLong("rownum"); 
  // if we are not already showing the last record, 
  **  we add a Next link  
   
  if (lastRowNum < hits) 
  { 
   Long next = lastRowNum + 1L; 
   final String nextLink = url + "&rownum=" + next; 
   out.println("<a href=\"" + url + 
    "&rownum=" + next + "\">Next</a>"); 
  } 
 %> 
</body> 

The resulting web page looks like this: 

 
A simple error page might be: 
<%@ page isErrorPage="true" import="java.io.*" %> 
<html> 
 <head> 
  <title>Error</title> 
 </head> 
 <body> 
 <h2>An Error occured...</h2> 
 <%= exception.toString() %><br> 
 <% 
  out.println("<!--"); 
  StringWriter sw = new StringWriter(); 
  PrintWriter pw = new PrintWriter(sw); 
  exception.printStackTrace(pw); 
  out.print(sw); 
  sw.close(); 
  pw.close(); 
  out.println("-->"); 
 %> 
 
 </body> 
</html> 

 Page 53 
 





Exceptions 
 

 

 

S E C T I O N  7  

Exceptions 
When an error occurs, the IMu Java API throws an exception. The exception is an 
IMuException object. This is a subclass of Java's standard Exception class. 

For simple error handling all that is usually required is to catch the exception as an 
Exception object and report the exception as a string: 
try 
{ 
 … 
} 
catch (Exception e) 
{ 
 System.err.format("Error: %s%n", e); 
 System.exit(1); 
} 

IMuException overrides the Exception's toString and returns an error 
message. 

To handle specific IMu errors it is necessary to catch the exception as an 
IMuException object. IMuException includes a property called id. This is a 
string and contains the internal IMu error code for the exception. For example, you 
may want to catch the exception raised when a Session's connect method fails 
and try to connect to an alternative server: 

 Page 55 
 



Exceptions 
 

 

 

Page 56  
 

 

String mainServer = "server1.com"; 
String alternativeServer = "server2.com"; 
Session mySession = new Session(); 
mySession.setPort = (…); 
 
// Try the main server first 
mySession.Host = mainServer; 
try 
{ 
 mySession.Connect(); 
} 
catch (IMuException e) 
{ 
 // Check for specific SessionConnect error 
 if (e.getID() != "SessionConnect") 
  throw; 
 
 // Now try the alternative server 
 mySession.setHost (alternativeServer); 
 mySession.Connect(); 
} 
// By the time we get to here the session is connected 
 to either the main server or the alternative. 

 



Reference 
 

 

 

S E C T I O N  8  

Reference 

Class Handler 
com.kesoftware.imu.Handler 

Provides a general low-level interface to creating server-side objects. 
 

Constructors 
public Handler(Session session) 

Creates an object which can be used to interact with server-side objects. 

Parameters 

session A Session object to be used to communicate with 
the IMu server. 

public Handler() 

Same as Handler above but a new session is created automatically using the Session class's 
default host and port values. 

 

 Page 57 
 



Reference 
 

 

 

Page 58  
 

Properties 
Object create 

getter getCreate() 

setter setCreate(Object create) 

 An object to be passed to the server when the server-side object is created. To 
have any effect this must be set before any object methods are called. This 
property is usually only set by sub-classes of Handler. 

boolean destroy 

getter getDestroy() 

setter setDestroy(Boolean destroy) 

 A flag controlling whether the corresponding server-side object should be 
destroyed when the session is terminated. 

String id 

getter getID() 

setter setID(String id) 

 The unique identifier assigned to the server-side object once it has been created. 
String language 

getter getLanguage() 

setter setLanguage(String language) 

 The language to be used in the server. 
String name 

getter getName() 

setter setName(String name) 

 The name of the server-side object to be created. This must be set before any 
object methods are called. 

Session session 

getter getSession() 

 The session object used by the handler to communicate with the IMu server. 
 



Reference 
 

 

 

 Page 59 
 

Methods 
public Object call(String method, Object parameters) 

Calls a method on the server-side object. 

Parameters 

method The name of the method to be called. 

parameters Any parameters to be passed to the method. The 
call method uses Java's reflection to determine 
the structure of the parameters to be transmitted to 
the server. 

Returns An object containing the result returned by the server-side 
method. 

Throws IMuException if a server-side error occurred. 
public Object call(String method) 

Same as call above but without any additional parameters. 
public Map request(Map request) 

Submits a low-level request to the IMu server. This method is chiefly used by the call 
method above. 

Parameters 

request A Map object containing the request parameters. 

Returns A Map object containing the server's response. 

Throws IMuException if a server-side error occurred. 
 



Reference 
 

 

 

Page 60  
 

Class IMu 
com.kesoftware.imu.IMu 

Simple class containing general IMu properties. This class cannot be instantiated. 
 

Class constants 
String VERSION 

 The version number of the IMu API. 
 



Reference 
 

 

 

 Page 61 
 

Class IMuException 
com.kesoftware.imu.IMuException 

Extends: java.lang.Exception 

Class for IMu-specific exceptions. 
 

Constructors 
public IMuException(String id, Object… args) 

Creates an IMu specific exception. 

Parameters 

id A string exception code. 

args Any additional arguments used to provide further 
information about the exception. 

public IMuException(String id) 

Same as IMuException above but without any additional arguments. 
 

Properties 
Object[] args 

getter getArgs() 

setter setArgs(Object[] args) 

 A flag controlling whether the corresponding server-side object should be 
destroyed when the session is terminated. 

String id 

getter getID() 

 The unique identifier assigned to the server-side object once it has been created. 
 



Reference 
 

 

 

Page 62  
 

Methods 
public String toString() 

Overrides the standard Object toString method. 

Returns A string description of the exception. 
 



Reference 
 

 

 

 Page 63 
 

Class Map 
com.kesoftware.imu.Map 

Extends: java.util.Arrays.HashMap<String, Object> 

Provides a simple map class with string keys and a set of convenience methods for getting 
values of certain types. 
 

Methods 
public <T> T[] getArray(String name, Class<T[]> type) 

Gets the value associated with the key name and returns it as an array of the type specified by 
type.  

Typical usage is: 
long[] array = map.getArray("key", Long[].class); 

Parameters 

name The key whose associated value is to be returned. 

type The type of the array required. 

Returns The correctly typed array. 
public boolean getBoolean(String name) 

Gets the value associated with the key name and returns it as a boolean. 

Parameters 
name  

The key whose associated value is to be returned. 

Returns The value, interpreted as a boolean. Null values are considered 
false. Numeric values are considered false if they evaluate to 
zero and true otherwise. Any other non-boolean value is 
converted to a String and then parsed as a Boolean. 

public double getDouble(String name) 

Gets the value associated with the key name and returns it as a double. 

Parameters 

name The key whose associated value is to be returned. 

Returns The value, interpreted as a double. Null values evaluate to 0. 
Boolean values evaluate to 0 if false and 1 if true. Any other 
non-numeric value is converted to a String and then parsed as a 
Double. 



Reference 
 

 

 

Page 64  
 

public int getInt(String name) 

Gets the value associated with the key name and returns it as an int. 

Parameters 

name The key whose associated value is to be returned. 

Returns The value, interpreted as an int. Null values evaluate to 0. 
Boolean values evaluate to 0 if false and 1 if true. Any other 
non-numeric value is converted to a String and then parsed as 
an Integer. 

public long getLong(String name) 

Gets the value associated with the key name and returns it as a long. 

Parameters 

name The key whose associated value is to be returned. 

Returns The value, interpreted as a long. Null values evaluate to 0. 
Boolean values evaluate to 0 if false and 1 if true. Any other 
non-numeric value is converted to a String and then parsed as a 
Long. 

public Map getMap(String name) 

Gets the value associated with the key name and returns it as an IMu Map object. 

Parameters 

name The key whose associated value is to be returned. 

Returns The value, cast to a Map. 
public Map[] getMaps(String name) 

Gets the value associated with the key name and returns it as an array of IMu Map objects. This 
is a short-hand for: 
getArray(name, Map[].class) 

Parameters 

name The key whose associated value is to be returned. 

Returns The value, converted to a Map[]. 
public String getString(String name) 

Gets the value associated with the key name and returns it as a String. 

Parameters 

name The key whose associated value is to be returned. 

Returns The value, interpreted as a String. Null values remain null. 
Any other non-string value is converted to a String using the 
object's toString method. 



Reference 
 

 

 

 Page 65 
 

public String[] getStrings(String name) 

Gets the value associated with the key name and returns it as an array of Strings. This is a 
short-hand for: 
getArray(name, String[].class) 

Parameters 

name The key whose associated value is to be returned. 

Returns The value, converted to a String[]. 
 



Reference 
 

 

 

Page 66  
 

Class Module 
com.kesoftware.imu.Module 

Extends: com.kesoftware.imu.Handler 

Provides access to an EMu module. 
 

Constructors 
public Module(String table, Session session) 

Creates an object which can be used to access the EMu module specified by table. 

Parameters 

table Name of the EMu module to be accessed. 

session A Session object to be used to communicate with 
the IMu server. 

public Module(String table) 

Same as Module above but a new session is created automatically using the Session class's 
default host and port values. 
 

Properties 
String table 

getter getTable() 

The name of the table associated with the Module object. 
 



Reference 
 

 

 

 Page 67 
 

Methods 
public int addFetchSet(String name, String columns) 

Associates a set of columns with a logical name in the server. The name can be used instead of 
a column list when retrieving data using fetch. 

Parameters 

name The logical name to associate with the set of 
columns. 

columns A string containing the names of the columns to 
be used when name is passed to fetch. The 
column names must be separated by a semi-colon 
or a comma. 

Returns The number of sets (including this one) registered in the server. 

Throws IMuException if a server-side error occurred. 
public int addFetchSet(String name, String[] columns) 

Same as addFetchSet above but the list of columns is passed as an array. 
public int addFetchSet(String name, ArrayList<String> columns) 

Same as addFetchSet above but the list of columns is passed as an array list. 
public int addFetchSets(Map sets) 

Associates several sets of columns with logical names in the server. This is the equivalent of 
calling addFetchSet for each entry in the map but is more efficient. 

Parameters 

sets A Map containing a set of mappings between a 
name and a set of columns. 

Returns The number of sets (including these ones) registered in the 
server. 

Throws IMuException if a server-side error occurred. 
public int addSearchAlias(String name, String columns) 

Associates a set of columns with a logical name in the server. The name can be used when 
specifying search terms to be passed to findTerms. The search becomes the equivalent of an 
OR search involving the columns. 

Parameters 

name The logical name to associate with the set of 
columns. 

columns A string containing the names of the columns to 
be used when name is passed to findTerms. The 
column names must be separated by a semi-colon 
or a comma. 



Reference 
 

 

 

Page 68  
 

Returns The number of aliases (including this one) registered in the 
server. 

Throws IMuException if a server-side error occurred. 
public int addSearchAlias(String name, String[] columns) 

Same as addSearchAlias above but the list of columns is passed as an array. 
public int addSearchAlias(String name, ArrayList<String> columns) 

Same as addSearchAlias above but the list of columns is passed as an array list. 
public int addSearchAliases(Map aliases) 

Associates several sets of columns with logical names in the server. This is the equivalent of 
calling addSearchAlias for each entry in the map but is more efficient. 

Parameters 

aliases A map containing a set of mappings between a 
name and a set of columns. 

Returns The number of sets (including these ones) registered in the 
server. 

Throws IMuException if a server-side error occurred. 
public int addSortSet(String name, String keys) 

Associates a set of sort keys with a logical name in the server. The name can be used instead 
of a sort key list when sorting the current result set using sort. 

Parameters 

name The logical name to associate with the set of 
columns. 

keys A string containing the names of the keys to be 
used when name is passed to sort. The keys must 
be separated by a semi-colon or a comma. 

Returns The number of sets (including this one) registered in the server. 

Throws IMuException if a server-side error occurred. 
public int addSortSet(String name, String[] keys) 

Same as addSortSet above but the list of keys is passed as an array. 
public int addSortSet(String name, ArrayList<String> keys) 

Same as addSortSet above but the list of keys is passed as an array list. 



Reference 
 

 

 

 Page 69 
 

public int addSortSets(Map sets) 

Associates several sets of sort keys with logical names in the server. This is the equivalent of 
calling addSortSet for each entry in the map but is more efficient. 

Parameters 

sets A map containing a set of mappings between a 
name and a set of keys. 

Returns The number of sets (including these ones) registered in the 
server. 

Throws IMuException if a server-side error occurred. 
public ModuleFetchResult fetch(String flag, int offset, int count, String 
columns) 

Fetches count records from the position described by a combination of flag and offset. 

Parameters 

flag The position to start fetching records from. Must 
be one of: 

 y "start" 

 y "current" 

 y "end 

offset The position relative to flag to start fetching 
from. 

count The number of records to fetch. A count of zero 
is permitted to change the location of the current 
record without returning any results. A count of 
less than zero causes all the remaining records in 
the result set to be returned. 

columns A string containing the names of the columns to 
be returned for each record or the name of a 
column set which has been registered previously 
using addFetchSet. The column names must be 
separated by a semi-colon or a comma. 

Returns A ModuleFetchResult object. 

Throws IMuException if a server-side error occurred. 
public ModuleFetchResult fetch(String flag, int offset, int count, String[] 
columns) 

Same as fetch above but the list of columns is passed as an array. 
public ModuleFetchResult fetch(String flag, int offset, int count, 
ArrayList<String> columns) 

Same as fetch above but the list of columns is passed as an array list. 



Reference 
 

 

 

Page 70  
 

public ModuleFetchResult fetch(String flag, int offset, int count) 

Same as fetch above but no columns are requested. The results returned will still include the 
pseudo-column rownum for each fetched record. 
public long findKey(long key) 

Searches for a record with the key value key. 

Parameters 

key The key of the record being searched for. 

Returns The number of records found. This will be either 1 if the record 
was found or 0 if not found. 

Throws IMuException if a server-side error occurred. 
public long findKeys(long[] keys) 

Searches for records with key values in the array keys. 

Parameters 

keys The list of keys being searched for. 

Returns The number of records found. 

Throws IMuException if a server-side error occurred. 
public long findKeys(ArrayList<Long> keys) 

Same as findKeys above but the keys are passed in an array list. 
public long findTerms(Terms terms) 

Searches for records which match the search terms specified in terms. 

Parameters 

terms The search terms. 

Returns An estimate of the number of records found. 

Throws IMuException if a server-side error occurred. 
public long findWhere(String where) 

Searches for records which match the TexQL where clause. 

Parameters 

where The TexQL where clause to use. 

Returns An estimate of the number of records found. 

Throws IMuException if a server-side error occurred. 



Reference 
 

 

 

 Page 71 
 

public long restoreFromFile(String file) 

Restores a set of records from a file on the server machine which contains a list of keys, one 
per line. 

Parameters 

file The file on the server machine containing the 
keys. 

Returns The number of records found. 

Throws IMuException if a server-side error occurred. 
public long restoreFromTemp(String file) 

Restores a set of records from a temporary file on the server machine which contains a list of 
keys, one per line. Operates the same way as restoreFromFile except that the file parameter 
is relative to the server's temporary directory. 
public long restoreFromTemp(String file) 

Restores a set of records from a temporary file on the server machine which contains a list of 
keys, one per line. Operates the same way as restoreFromFile except that the file parameter 
is relative to the server's temporary directory. 

Parameters 

file The file on the server machine containing the 
keys. 

Returns The number of records found. 

Throws IMuException if a server-side error occurred. 
public ModuleSortResult sort(String keys, String flags) 

Sorts the current result set by the sort keys in keys. Each sort key is a column name optionally 
preceded by a "+" (for an ascending sort) or a "-" (for a descending sort). 

Parameters 

keys A string containing the list of sort keys. The keys 
must be separated by a semi-colon or a comma. 

flags A string containing a set of flags specifying the 
behaviour of the sort. The flags must be separated 
by a semi-colon or a comma. 

Returns A ModuleSortResult object. If the report flag has not been 
specified the result will be null. 

Throws IMuException if a server-side error occurred. 
public ModuleSortResult sort(String keys, String[] flags) 

Same as sort above but the flags are passed as an array. 
public ModuleSortResult sort(String keys, ArrayList<String> flags) 

Same as sort above but the flags are passed as an array list. 



Reference 
 

 

 

Page 72  
 

public ModuleSortResult sort(String[] keys, String flags) 

Same as sort above but the keys are passed as an array. 
public ModuleSortResult sort(String[] keys, String[] flags) 

Same as sort above but the keys and flags are passed as arrays. 
public ModuleSortResult sort(String[] keys, ArrayList<String> flags) 

Same as sort above but the keys are passed as an array and the flags are passed as an array 
list. 
public ModuleSortResult sort(ArrayList<String> keys, String flags) 

Same as sort above but the keys are passed as an array list. 
public ModuleSortResult sort(ArrayList<String> keys, String[] flags) 

Same as sort above but the keys are passed as an array list and the flags are passed as an 
array. 
public ModuleSortResult sort(ArrayList<String> keys, ArrayList<String> 
flags) 

Same as sort above but the keys and flags are passed as array lists. 
 



Reference 
 

 

 

 Page 73 
 

Class ModuleFetchResult 
com.kesoftware.imu.ModuleFetchResult 

Provides results from a call to the Module fetch method. 
 

Properties 
int count 

getter getCount() 

 The number of records returned in the result. 
long hits 

getter getHits() 

 The best estimate of the size of the result set after the fetch method has 
completed. When the Module object generates a result set using findTerms or 
findWhere, the number of matches is occasionally an overestimate of the true 
number of matches. After the fetch method has been called, the IMu server 
may have a better estimate of the true number of matches so it is included in the 
result. 

Map[] rows 

getter getRows() 

 The array of the records actually fetched. Each record is represented by a Map 
object, with the map keys being the names of the columns requested in the 
fetch call. 

 



Reference 
 

 

 

Page 74  
 

Class ModuleSortResult 
com.kesoftware.imu.ModuleSortResult 

Provides results from a call to the Module sort method. This is a recursive structure holding 
the information for one sort key. Information for secondary, tertiary and subsequent sort keys 
is stored in nested ModuleSortResult objects. 
 

Properties 
int count 

getter getCount() 

 The number of distinct terms returned in the result. 
ModuleSortTerm[] terms 

getter getTerms() 

 The array of the distinct terms for a sort key. Each term is represented by a 
ModuleSortTerm object. 

 



Reference 
 

 

 

 Page 75 
 

Class ModuleSortTerm 
com.kesoftware.imu.ModuleSortTerm 

Holds the information for a single distinct term in the results of a sort. 
 

Properties 
long count 

getter getCount() 

 The number of occurrences of this term in the result set. For secondary or 
subsequent sort keys this is the number of occurrences for a given outer term. 

ModuleSortResult nested 

getter getNested() 

 Information regarding nested terms within this term. This will be null if there 
are no nested terms. 

String value 

getter getValue() 

 The value of the distinct term itself. 
 



Reference 
 

 

 

Page 76  
 

Class Session 
com.kesoftware.imu.Session 

Manages a connection to an IMu server. The server’s host name and port can be specified in 
the constructor by setting properties on the object or by setting class-based default properties. 
 

Class Properties 
String defaultHost 

getter getDefaultHost() 

setter setDefaultHost(String host) 

The name of the host used to create a connection if no object-specific host has 
been supplied. 

int defaultPort 

getter getDefaultPort() 

setter setDefaultPort(int port) 

The number of the port used to create a connection if no object-specific host 
has been supplied. 

 

Constructors 
Session(String host, int port) 

Creates a Session object with the specified host and port. 
Session() 

Creates a Session object with the default host and port. 
 



Reference 
 

 

 

 Page 77 
 

Properties 
boolean close 

getter getClose() 

setter setClose(boolean close) 

 A flag controlling whether the connection to the server should be closed after 
the next request. This flag is passed to the server as part of the next request to 
allow it to clean up. 

String context 

getter getContext () 

setter setContext(String context) 

 The unique identifier assigned by the server to the current session. 
String host 

getter getHost() 

setter setHost(String host) 

 The name of the host used to create the connection. Setting this property after 
the connection has been established has no effect. 

int port 

getter getPort() 

setter setPort(int port) 

 The number of the port used to create the connection. Setting this property after 
the connection has been established has no effect. 

boolean suspend 

getter getSuspend() 

setter setSuspend(boolean suspend) 

 A flag controlling whether the server process handling this session should 
begin listening on a distinct, process-specific port to ensure a new session 
connects to the same server process. This is part of IMu's mechanism for 
maintaining state. If this flag is set to true, then after the next request is made 
to the server, the Session's port property will be altered to the process-
specific port number. 

 



Reference 
 

 

 

Page 78  
 

Methods 
public void connect() 

Opens a connection to an IMu server. 

Throws IMuException if the connection could not be opened. 
public void disconnect() 

Closes the connection to the IMu server. 
public void login(String user, String password, boolean spawn) 

Logs in as the given user with the given password. If the spawn parameter is set to true, this 
will cause the server to create a new child process specifically to handle the newly logged in 
user's requests. 

Parameters 

user The name of the user to login as. 

password The user's password for authentication. 

spawn A flag indicating whether the process should 
create a new child process specifically for 
handling the newly logged in user's requests. 

Throws IMuException if the login request failed. 

 Exception (or another subclass) if a low-level socket 
communication error occurred. 

public void login(String user, String password) 

Same as login above except that the spawn parameter defaults to true. 
public Map request(Map request) 
Submits a low-level request to the IMu server. 

Parameters 

request A Map object containing the request parameters. 

Returns A Map object containing the server's response. 

Throw IMuException if a server-side error occurred. 
 



Reference 
 

 

 

 Page 79 
 

Class TempInputStream 
com.kesoftware.imu.TempInputStream 

Extends: java.io.FileInputStream 

This class is used to provide access to a temporary copy of a file returned from the server. 
This is most commonly used when a request is made to fetch a virtual multimedia column 
such as resource. 

The class ensures that the temporary file that the stream is accessing is removed when the 
stream is closed or the stream object is finalised. 
 

Constructors 
TempInputStream(File file) 

Creates an input stream to access the file referred to by file. 

Note: This file is removed when the stream is closed or finalised. 

Parameters 

file Temporary file to be accessed. 

Throws FileNotFoundException if the file does not exist. 
 

Methods 
public void close() 

Closes the input stream. The file associated with the stream is removed. 

Throws IOException if the stream access failed. 
public void finalize() 

Overrides the base class's finalize method. If close has not been called previously, the 
stream is closed and the file is removed. 

Throws IOException if the stream access failed. 
 



Reference 
 

 

 

Page 80  
 

Class Terms 
com.kesoftware.imu.Terms 

This class is used to create a set of search terms that is passed to the IMu server. A Terms 
object can be passed to the findTerms method of either a Module or Modules object. 
 

Constructors 
Terms(TermsKind kind) 

Creates a new Terms object with the given kind. The kind can be either TermsKind.AND (for 
a set of AND terms) or TermsKind.OR (for a set of OR terms). 
Terms() 

Creates a new AND Terms object. This is the equivalent of: 
Terms(TermsKind.AND) 
 

Properties 
TermsKind kind 

getter getKind() 

 The kind of terms list as specified when the object was 
constructed. Will be either: 

 y TermsKind.AND 

 -OR- 

 y TermsKind.OR 
Object[] list 

getter getList() 

 The list of search terms themselves. Each element in the list can 
be either: 

 y A two or three element array comprising: 

  y a column name 

  y text to search for 

  y an optional operator 

 y A nested Terms object 
 



Reference 
 

 

 

 Page 81 
 

Methods 
public void add(String name, String value, String operator) 

Adds a new term to the list. 

Parameters 

name The name of a column or a search alias. 

value The value to match. 

operator An operator to apply (such as "contains", "=", 
"<" etc.) for the server to apply when searching. 

public void add(String name, String value) 

Same as add above except no operator is specified. This is the preferred method for adding 
terms in many cases as it allows the server to choose the most suitable operator. 
public Terms addAnd() 

Adds an initially empty nested set of AND terms to the list. This is a shortcut for: 
addTerms(TermsKind.AND) 

Returns The newly added Terms object. 
public Terms addOr() 

Adds an initially empty nested set of OR terms to the list. This is a shortcut for: 
addTerms(TermsKind.OR) 

Returns The newly added Terms object. 
public Terms addTerms(TermsKind kind) 

Adds an initially empty nested set of terms to the list. 

Returns The newly added Terms object. 
 



Reference 
 

 

 

Page 82  
 

Enum TermsKind 
com.kesoftware.imu.TermsKind 

An enumeration used to define the relationship between a set of terms in a Terms object. 
 

Members 

AND The relationship between the terms is AND 

OR The relationship between the terms is OR 
 



 

 

Index 
A 

A Simple Example • 30, 47 

Accessing an EMu Module • 9 

Attachments • 24 
C 

Class constants • 60 

Class Handler • 57 

Class IMu • 60 

Class IMuException • 61 

Class Map • 63 

Class Module • 66 

Class ModuleFetchResult • 73 

Class ModuleSortResult • 74 

Class ModuleSortTerm • 75 

Class Properties • 76 

Class Session • 76 

Class TempInputStream • 79 

Class Terms • 80 

Column Sets • 29 

columns • 20 

Connecting to an IMu server • 7, 9 

Constructors • 57, 61, 66, 76, 79, 80 

count • 19 
E 

Enum TermsKind • 82 

Example • 36, 38, 50 

Examples • 14 

Exceptions • 5, 55 
F 

findKey • 11 

findKeys • 12 

findTerms • 13 

findWhere • 16 

flag and offset • 18 

flags • 34 
G 

Getting Information from Matching 
Records • 17 

Grouping a set of nested table columns • 27 
H 

Handlers • 7, 8 
I 

Introduction • 1 
K 

keys • 33 
M 

Maintaining State • 29, 47 

Members • 82 

Methods • 59, 62, 63, 67, 78, 79, 81 

Multimedia • 41 
N 

Number of matches • 16 
P 

Properties • 58, 61, 66, 73, 74, 75, 77, 80 
R 

Reference • 17, 21, 57 

Rename a Column • 26 

Return Value • 37 

Return Values • 21 

Reverse Attachments • 25 
S 

Searching a Module • 10 

Sorting • 33 
T 

Test Program • 4 
U 

Using IMu’s Java library • 3 
 


	Test Program
	Exceptions
	Handlers
	Searching a Module
	findKey
	findKeys
	findTerms
	Examples

	findWhere
	Number of matches

	Getting Information from Matching Records
	flag and offset
	count
	columns
	Return Values
	Attachments
	Reverse Attachments
	Rename a Column
	Grouping a set of nested table columns
	Column Sets


	A Simple Example
	Sorting
	keys
	flags
	Return Value
	Example

	Example
	Class Handler
	Constructors
	Properties
	Methods

	Class IMu
	Class constants

	Class IMuException
	Constructors
	Properties
	Methods

	Class Map
	Methods

	Class Module
	Constructors
	Properties
	Methods

	Class ModuleFetchResult
	Properties

	Class ModuleSortResult
	Properties

	Class ModuleSortTerm
	Properties

	Class Session
	Class Properties
	Constructors
	Properties
	Methods

	Class TempInputStream
	Constructors
	Methods

	Class Terms
	Constructors
	Properties
	Methods

	Enum TermsKind
	Members

	Index

