

www.kesoftware.com
© 2011 KE Software. All rights reserved.

IMu Documentation

Using KE IMu's .Net API
Document Version 2

EMu Version 4.0
IMu Version 1.0.03

Contents
S E C T I O N 1 Introduction 1

Documenting data types 1

S E C T I O N 2 Using IMu’s .Net library 3

Test Program 4
Exceptions 5

S E C T I O N 3 Connecting to an IMu server 7

Handlers 9

S E C T I O N 4 Accessing an EMu Module 11

Searching a Module 12
FindKey 13
FindKeys 14
FindTerms 15

Examples 16
FindWhere 21
Number of matches 22

Getting Information from Matching Records 23
flag and offset 24
count 25
columns 26
Return Values 27

Attachments 32
Reverse Attachments 33
Rename a Column 35
Grouping a set of nested table columns 36
Column Sets 40

A Simple Example 42
Sorting 48

keys 49
flags 50
Return Value 53
Example 54

Multimedia 57

S E C T I O N 5 Maintaining State 67

S E C T I O N 6 Exceptions 71

S E C T I O N 7 Reference 73

Class Handler 74
Constructors 74

Properties 74
Methods 74

Class IMu 76
Class constants 76

Class IMuException 77
Constructors 77
Properties 77
Methods 77

Class Map 78
Methods 78

Class Module 81
Constructors 81
Properties 81
Methods 82

Class ModuleFetchResult 90
Properties 90

Class ModuleSortResult 91
Properties 91

Class ModuleSortTerm 92
Properties 92

Class Session 93
Class Properties 93
Constructors 93
Properties 94
Methods 95

Class Terms 97
Constructors 97
Properties 97
Methods 98

Enum TermsKind 99
Members 99

Index 101

Introduction

 Page 1

Introduction
IMu, or Internet Museum, broadly describes KE Software's strategy and toolset for
distributing data held within EMu via the Internet. Distribution includes the publishing
of content on the web, but goes far beyond this to cover sharing of data via the
Internet (portals, online partnerships, etc.); publishing content to new mobile
technologies; iPod guided tours, etc.

To facilitate these various Internet projects, KE has produced a set of documents that
describe how to implement and customize IMu components, including:

• APIs (for Developers)
• Web pages for publishing EMu
• Tools, including:

• iPhone / mobile interfaces
• iPod guided tours

This document describes use of the IMu .Net API for both C# and Visual Basic (VB)
programmers.

Documenting data types
C# and Visual Basic .Net programmers are familiar with two kinds of data types.
Each language has both its own conventional types and standardized .Net types. For
example, an integer variable is declared idiomatically in C# as int while in Visual
Basic it is declared as Integer. The standard .Net type for both of these is Int32.

This document uses conventional types wherever possible. Using conventional types
in documentation makes it easier for the reader to follow the code examples.
However, this creates a minor problem in the text where the type of a variable or
property or the return value of a method is referred to. For example, the
AddFetchSet method of IMu's Module class returns an int in C# and an Integer in
VB (both of which are equivalent to the standard .Net type Int32). Explicitly
describing the method's return value for both C# and VB this way is cumbersome
and confusing. To avoid this, where a data type is referred to in the general text, a
generic term for the type is usually used instead. For example, the AddFetchSet
method is described as returning an integer. Similarly a method such as FindKey
which returns a long in C# and a Long in VB (both of which are equivalent to the
standard .Net type Int64) is described as returning a long integer.

S E C T I O N 1

Using IMu’s .Net library

 Page 3

Using IMu’s .Net library
A single .Net assembly file, imu-1-0-03.dll (or higher) is required to develop an
IMu-based application. This assembly contains all the classes that make up the IMu
.Net API.

As with all .Net assemblies, the IMu .Net assembly must be available so that the .Net
compiler and runtime environment can find and use the IMu classes. Tools for .Net
development, such as Microsoft's Visual Studio, make it possible to add a reference
to the IMu assembly to a project.

All classes in the IMu .Net API are included in the one namespace, IMu. As is usual
in .Net development, it is possible to refer to an IMu class in your code by either:

• Using the fully qualified name:
C#

IMu.Session mySession = new
IMu.Session();

VB
Dim mySession = New IMu.Session()

-OR-
• Importing the namespace:

C#
using IMu;
…
Session mySession = new Session();

VB
Imports IMu
…
Dim mySession = New Session()

S E C T I O N 2

Using IMu’s .Net library

Page 4

Test Program
Compiling and running this very simple console-based IMu program is a good test of
whether the development environment has been set up properly for using IMu:

C#
using System;

namespace Test
{
 class Hello
 {
 static void Main(string[] args)
 {
 Console.WriteLine("IMu Version {0}", IMu.IMu.VERSION);
 Console.WriteLine("Press any key to finish");
 Console.ReadKey();
 }
 }
}

VB
Module Hello
 Sub Main()
 Console.WriteLine("IMu Version {0}", IMu.IMu.VERSION)
 Console.WriteLine("Press any key to finish")
 Console.ReadKey()
 End Sub
End Module

The IMu library includes a class called IMu. This class includes a static string
member called VERSION which contains the version of this IMu release.

Using IMu’s .Net library

 Page 5

Exceptions
Many of the methods in the IMu library objects throw exceptions when an error
occurs. For this reason, code that uses IMu library objects should be surrounded with
a try/catch block.

The following code is a basic template for writing .Net programs which use the IMu
library:

C#
using IMu;
…
try
{
 // Create and use IMu objects
 …
}
catch (Exception e)
{
 // Handle or report error
 …
}

VB
Imports IMu
…
Try
 ' Create and use IMu objects
 …
Catch ex As Exception
 ' Handle or report error
 …
End Try

Most IMu exceptions throw an IMuException object. IMuException is a subclass
of the standard .Net Exception. In many cases your code can simply catch the
standard Exception (as in this template). If more information is required about the
exact IMuException thrown, see Exceptions (page 71).

 Many of the examples that follow assume that code fragments have been
surrounded with code structured in this way.

Connecting to an IMu server

 Page 7

Connecting to an IMu server
Most IMu based programs begin by creating a connection to an IMu server.
Connections to a server are created and managed using IMu’s Session class.
Before connecting, both the name of the host and the port number to connect on
must be specified. This can be done in one of three ways.

The simplest way to create a connection to an IMu server is to pass the host name
and port number to the Session constructor and then call the Connect method. For
example:

C#
using IMu;
…
Session mySession = new Session("server.com", 12345);
mySession.Connect();

VB
Imports IMu
…
Dim mySession = New Session("server.com", 12345)
mySession.Connect()

Alternatively, pass no values to the constructor and then set the Host and Port
properties before calling Connect:

C#
using IMu;
…
Session mySession = new Session();
mySession.Host = "server.com";
mySession.Port = 12345;
mySession.Connect();

VB
Imports IMu
…
Dim mySession as Session = New Session
mySession.Host = "server.com"
mySession.Port = 12345
mySession.Connect()

If either the host or port is not set, the Session class default value will be used.
These defaults can be overridden by setting the class (static) properties
DefaultHost and DefaultPort:

S E C T I O N 3

Connecting to an IMu server

Page 8

C#
using IMu;
…
Session.DefaultHost = "server.com";
Session.DefaultPort = 12345;
Session mySession = new Session();
mySession.Connect();

VB
Imports IMu
…
Session.DefaultHost = "server.com"
Session.DefaultPort = 12345
Dim mySession = New Session
mySession.Connect()

This technique is useful when planning to create several connections to the same
server or when wanting to get a handler object (page 9) to create the connection
automatically.

Connecting to an IMu server

 Page 9

Handlers
Once a connection to an IMu server has been established, it is possible to create
handler objects to submit requests to the server and receive responses.

 When a handler object is created, a corresponding object is created by the IMu
server to service the handler's requests.

All handlers are subclasses of IMu's Handler class.

 You do not typically create a Handler object directly but instead use a
subclass.

In this document we examine the most frequently used handler, Module, which
allows you to find and retrieve records from a single EMu module.

Accessing an EMu Module

 Page 11

Accessing an EMu Module
A program accesses an EMu module (or table, the terms are used interchangeably)
using a Module class. The name of the table to be accessed is passed to the Module
constructor. For example:

C#
using IMu;
…
Module parties = new Module("eparties", mySession);

VB
Dim parties = New IMu.Module("eparties", mySession)

 The IMu class name Module conflicts with a Visual Basic reserved word and it
is therefore necessary to use the fully qualified name IMu.Module.

This code assumes that a Session object called mySession has already been
created. If a Session object is not passed to the Module constructor, a session will
be created automatically using the DefaultHost and DefaultPort class properties.
See Connecting to an IMu Server (page 7) for details.

Once a Module object has been created, it can be used to search the specified
module and retrieve records.

S E C T I O N 4

Accessing an EMu Module

Page 12

Searching a Module
One of the following methods can be used to search for records within a module:

• FindKey
• FindKeys
• FindTerms
• FindWhere

Accessing an EMu Module

 Page 13

FindKey
The FindKey method searches for a single record by its key. The key is a long
integer (i.e. long in C#, Long in VB).

For example, the following code searches for a record with a key of 42 in the Parties
module:

C#
using IMu;
…
Module parties = new Module("eparties", mySession);
long hits = parties.FindKey(42);

VB
Dim parties = New IMu.Module("eparties", mySession)
Dim hits = parties.FindKey(42);

The method returns the number of matches found, which is either 1 if the record
exists or 0 if it does not.

Accessing an EMu Module

Page 14

FindKeys
The FindKeys method searches for a set of key values. The keys are passed as an
array of long integers.

C#
using IMu;
…
Module parties = new Module("eparties", mySession);
long[] keys = { 52, 42, 17 };
long hits = parties.FindKeys(keys);

VB
Dim parties = New IMu.Module("eparties", mySession)
Dim keys() As Long = {52, 42, 17}
Dim hits = parties.FindKeys(keys)

or as a List:
C#

Module parties = new Module("eparties", mySession);
List<long> keys = new List<long>();
keys.Add(52);
keys.Add(42);
keys.Add(17);
long hits = parties.FindKeys(keys);

VB
Dim parties = New IMu.Module("eparties", mySession)
Dim keys New List(Of Long)
keys.Add(1)
keys.Add(2)
keys.Add(3)
Dim hits = parties.FindKeys(keys)

The method returns the number of records found.

Accessing an EMu Module

 Page 15

FindTerms
The FindTerms method is the most flexible and powerful way to search for records
within a module. It can be used to run simple single term queries or complex multi-
term searches.

The terms are specified using a Terms object. Once a Terms object has been
created, add specific terms to it (using the Add method) and then pass the Terms
object to the FindTerms method. For example, to specify a Parties search for records
which contain a First Name of John and a Last Name of Smith:

C#
Terms search = new Terms();
search.Add("NamFirst", "John");
search.Add("NamLast", "Smith");
…
long hits = parties.FindTerms(search);

VB
Dim search = New Terms
search.Add("NamFirst", "John")
search.Add("NamLast", "Smith")
…
Dim hits = parties.FindTerms(search)

There are several points to note:

1. The first argument passed to the Add method element contains the name of the
column or an alias in the module to be searched.

2. The second argument contains the value for which to search.
3. A comparison operator can be included as a third argument (see example 3

below).
The operator specifies how the value supplied as the second argument of the
array should be matched. Operators are the same as those used in TexQL (see
KE's TexQL documentation for details).
Specifying an operator is optional. If none is supplied, the operator defaults to
matches. This is not a real TexQL operator, but is translated by the search
engine as the most "natural" operator for the type of column being searched. For
example, with text columns matches is translated as "contains" and with integer
columns it is translated as "=".

 Unless it is really necessary to specify an operator, consider using the matches
operator, or better still supplying no operator at all as this allows the server to
determine the best type of search.

 The first element of each term may be the name of a search alias. A search
alias associates a name with one or more actual columns. Aliases are created
using the AddSearchAlias or AddSearchAliases methods.

Accessing an EMu Module

Page 16

Examples

1. To search for the name Smith in the Last Name field of the Parties module, the
following term can be used:

C#
Terms search = new Terms();
search.Add("NamLast", "Smith");

VB
Dim search = New Terms
search.Add("NamLast", "Smith")

2. Specifying search terms for other types of columns is straightforward. For
example, to search for records inserted on April 4, 2011:

C#
Terms search = new Terms();
search.Add("AdmDateInserted", "Apr 4 2011");

VB
Dim search = New Terms
search.Add("AdmDateInserted", "Apr 4 2011")

3. To search for records inserted before April 4, 2011, it is necessary to add an
operator:

C#
Terms search = new Terms();
search.Add("AdmDateInserted", "Apr 4 2011", "<");

VB
Dim search = New Terms
search.Add("AdmDateInserted", "Apr 4 2011", "<")

4. By default, the relationship between the terms is a Boolean AND. This means
that to find records which match both a First Name containing John and a Last
Name containing Smith the Terms object can be created as follows:

C#
Terms search = new Terms();
search.Add("NamFirst", "John");
search.Add("NamLast", "Smith");

VB
Dim search = New Terms
search.Add("NamFirst", "John")
search.Add("NamLast", "Smith")

Accessing an EMu Module

 Page 17

5. A Terms object where the relationship between the terms is a Boolean OR can
be created by passing the enumeration value TermsKind.OR to the Terms
constructor. This means that:

C#
Terms search = new Terms(TermsKind.OR);
search.add("NamFirst", "John");
search.add("NamLast", "Smith");

VB
Dim search = New Terms(TermsKind.OR)
search.Add("NamFirst", "John")
search.Add("NamLast", "Smith")

specifies a search for records where either the First Name contains John or the
Last Name contains Smith.

6. Combinations of AND and OR search terms can be created. The AddAnd method
adds a new set of AND terms to the original Terms object. Similarly the AddOr
method adds a new set of OR terms. To restrict the search for a First Name of
John and a Last Name of Smith to matching records inserted before April 4,
2011 or on May 1, 2011, specify:

C#
Terms search = new Terms();
search.Add("NamFirst", "John");
search.Add("NamLast", "Smith");
Terms dates = search.AddOr();
dates.add("AdmDateInserted", "Apr 4 2011", "<");
dates.add("AdmDateInserted", "May 1 2011");

VB
Dim search = New Terms
search.Add("NamFirst", "John")
search.Add("NamLast", "Smith")
Dim dates = search.AddOr()
dates.Add("AdmDateInserted", "Apr 4 2011", "<")
dates.Add("AdmDateInserted", "May 1 2011")

7. To run a search, pass the Terms object to the FindTerms method:
C#

Module parties = new Module("eparties", mySession);
Terms search = new Terms();
search.add("NamLast", "Smith");
long hits = parties.findTerms(search);

VB
Dim parties = New IMu.Module("eparties", mySession)
Dim search = New Terms
search.Add("NamFirst", "John")
Dim hits = parties.FindTerms(myTerms)

As with other Find methods, the return value contains the estimated number of
matches.

Accessing an EMu Module

Page 18

8. To use a search alias, call the AddSearchAlias method to associate the alias
with one or more real column names before calling FindTerms. Suppose we
want to allow a user to search the Catalog module for keywords. Our definition
of a keywords search is to search the SummaryData, CatSubjects_tab and
NotNotes columns. We could do this by building an OR search:

C#
string keyword = …;
…
Terms search = new Terms(TermsKind.OR);
search.Add("SummaryData", keyword);
search.Add("CatSubjects_tab", keyword);
search.Add("NotNotes", keyword);

VB
Dim keyword As String = …

Dim search = New Terms(TermsKind.OR)
search.Add("SummaryData", keyword)
search.Add("CatSubjects_tab", keyword)
search.Add("NotNotes", keyword)

Accessing an EMu Module

 Page 19

 Another way of doing this is to register the association between the name
keywords and the three columns we are interested in and then pass the name
keywords as the column to be searched:

C#
string keyword = …;
…
Module catalogue = new Module("ecatalogue", mySession);
string[] columns =
{
 "SummaryData",
 "CatSubjects_tab",
 "NotNotes"
};
catalogue.AddSearchAlias("keywords", columns);
…
Terms search = new Terms();
search.Add("keywords", keyword);
catalogue.FindTerms(search);

VB
Dim keyword As String = …;
…
Dim catalogue = new IMu.Module("ecatalogue", mySession)
Dim columns() As String =
 {
 "SummaryData",
 "NamRoles_tab",
 "NotNotes"
 }
catalogue.AddSearchAlias("keywords", columns)
…
Dim search = New Terms
search.Add("keywords", keyword)
catalogue.FindTerms(search)

Accessing an EMu Module

Page 20

 An alternative to passing the columns as an array of strings is to pass a single
string, with the column names separated by semi-colons:

C#
string keyword = …;
…
Module catalogue = new Module("ecatalogue", mySession);
string columns = "SummaryData;CatSubjects_tab;NotNotes";
catalogue.AddSearchAlias("keywords", columns);
…
Terms search = new Terms();
search.Add("keywords", keyword);
catalogue.FindTerms(search);

VB
Dim keyword As String = …;
…
Dim catalogue = new IMu.Module("ecatalogue", mySession)
Dim columns = "SummaryData;CatSubjects_tab;NotNotes"
catalogue.AddSearchAlias("keywords", columns)
…
Dim search = New Terms
search.Add("keywords", keyword)
catalogue.FindTerms(search)

The advantage of using a search alias is that once the alias is registered a
simple name can be used to specify a more complex OR search.

9. To add more than one alias at a time, use the IMu Map class to build an
associative array of names and columns and call the AddSearchAliases
method:

C#
Map aliases = new Map();
aliases.Add("keywords",
 "SummaryData;CatSubjects_tab;NotNotes");
aliases.Add("title", "SummaryData;TitMainTitle");
catalogue.AddSearchAliases(aliases);

VB
Dim aliases = New Map
aliases.Add("keywords",
 "SummaryData;CatSubjects_tab;NotNotes")
aliases.Add("title", "SummaryData;TitMainTitle")
catalogue.AddSearchAliases(aliases)

Accessing an EMu Module

 Page 21

FindWhere
With the FindWhere method it is possible to submit a complete TexQL where clause.

C#
Module parties = new Module("eparties", mySession);
string where = "NamLast contains 'Smith'";
long hits = parties.FindWhere(where);

VB
Dim parties = New IMu.Module("eparties", mySession)
Dim where = "NamLast contains 'Smith'"
Dim hits = parties.FindWhere(where)

Although this method provides complete control over exactly how a search is run, it is
generally better to use FindTerms to submit a search rather than building a where
clause. There are (at least) two reasons to prefer FindTerms over FindWhere:

1. Building the where clause requires the code to have detailed knowledge of the
data type and structure of each column. The FindTerms method leaves this task
to the server. For example, specifying the term to search for a particular value in
a nested table is straightforward. To find Parties records where the Roles nested
table contains Artist, FindTerms simply requires:
myTerms.Add("NamRoles_tab", "Artist")
On the other hand, the equivalent TexQL clause is:
exists(NamRoles_tab where NamRoles contains 'Artist')
The TexQL for double nested tables is even more complex.

2. More importantly, FindTerms is more secure.
With FindTerms a set of terms is submitted to the server which then builds the
TexQL where clause. This makes it much easier for the server to check for terms
which may contain SQL-injection style attacks and to avoid them.
If your code builds a where clause from user entered data so it can be run using
FindWhere, it is much more difficult, if not impossible, for the server to check and
avoid SQL-injection. The responsibility for checking for SQL-injection becomes
yours.

Accessing an EMu Module

Page 22

Number of matches
All the Find methods return the number of matches found by the search. For
FindKey and FindKeys this number is always the exact number of matches found.
The number returned by FindTerms and FindWhere is best thought of as an
estimate. This estimate is almost always correct but because of the nature of the
indexing used by the server's data engine (Texpress) the number can sometimes be
an over-estimate of the real number of matches. This is similar to the estimated
number of hits returned by a Google search.

Accessing an EMu Module

 Page 23

Getting Information from Matching
Records

Module's Fetch method is used to get information from the matching records once
the search of a module has been run. The server maintains the set of matching
records in a list and Fetch can be used to retrieve any information from any
contiguous block of records in the list.

The simplest form of the fetch method takes four arguments:

• flag
• offset
• count
• columns

 There are many different versions of the Fetch method. See Reference (page
73) for details of each one.

Accessing an EMu Module

Page 24

flag and offset
The flag and offset arguments define the starting position of the block records to
be fetched. The flag argument is a string and must be one of:

• "start"
• "current"
• "end"

The "start" and "end" flags refer to the first record and the last record in the
matching set. The "current" flag refers to the position of the last record fetched by
the previous call to Fetch. If Fetch has not been called, "current" refers to the first
record in the matching set.

The offset argument is an integer. It adjusts the starting position relative to the
flag. A positive value for offset specifies a start after the position specified by flag
and a negative value specifies a start before the position specified by flag.

For example, calling Fetch with a flag of "start" and offset of 3 will cause
Fetch to return records starting from the fourth record in the matching set. Specifying
a flag of "end" and an offset of -8 will cause Fetch to return records starting from
the ninth last record in the matching set.

To retrieve the next record after the last returned by the previous Fetch, you would
pass a flag of "current" and an offset of 1.

Accessing an EMu Module

 Page 25

count
The count argument specifies the maximum number of records to be retrieved.

Passing a count value of 0 is valid. This causes Fetch to change the current record
without actually retrieving any data.

Using a negative value of count is also valid. This causes Fetch to return all the
records in the matching set from the starting position (specified by flag and offset).

Accessing an EMu Module

Page 26

columns
The columns argument is used to specify which columns should be included in the
returned records. The argument can be either a simple string, an array of strings or a
List of strings. In its simplest form each string contains a single column name, or
several column names separated by semi-colons or commas.

For example, to retrieve the information for both the NamFirst and NamLast columns,
you would do one of:

C#
Module parties = new Module("eparties", mySession)
string columns = "NamFirst;NamLast";
parties.Fetch("start", 0, 1, columns);

VB
Dim parties = New IMu.Module("eparties", mySession)
Dim columns = "NamFirst;NamLast"
parties.Fetch("start", 0, 1, columns)

-OR-
C#

string[] columns =
{
 "NamFirst",
 "NamLast"
};
parties.Fetch("start", 0, 1, columns);

VB
Dim columns() =
 {
 "NamFirst",
 "NamLast"
 }
parties.Fetch("start", 0, 1, columns)

-OR-
C#

using System.Collections.Generic;
…
List<string> columns = new List<string>();
columns.Add("NamFirst");
columns.Add("NamLast");
parties.Fetch("start", 0, 1, columns);

VB
Dim columns = New List(Of String)
columns.Add("NamFirst")
columns.Add("NamLast")
parties.Fetch("start", 0, 1, columns)

Accessing an EMu Module

 Page 27

Return Values
The Fetch method returns records requested in a ModuleFetchResult object. This
object contains three read-only properties:

• Count (an integer)
• Hits (a long integer)
• Rows (an array of IMu Map objects)

The Count property is the number of records returned by the Fetch request.

The Hits property is the estimated number of matches in the result set. This number
is returned for each Fetch because the estimate can decrease as records in the
result set are processed by the Fetch method.

The Rows property is an array containing the set of records requested. Each element
of the Rows array is itself a Map object. Each Map object contains entries for each
column requested.

The IMu Map class is a subclass of .Net’s standard Dictionary. It defines its key
type to be a string. It also provides some convenience methods for converting the
types of elements stored in the map. See Reference (page 73) for details.

The following example shows a simple search of the EMu Parties module using
FindTerms with Fetch used to retrieve a set of records:

Accessing an EMu Module

Page 28

C#
using IMu;
…
try
{
 Session mySession = new Session("server.com", 12345);

 Module parties = new Module("eparties", mySession);

 /* Find all party records where Last Name contains 'smith'
 */
 Terms search = new Terms();
 search.Add("NamLast", "Smith");
 long hits = parties.FindTerms(search);

 /* We want to fetch the irn, NamFirst and NamLast
 ** columns for each record.
 */
 string[] columns =
 {
 "irn",
 "NamFirst",
 “NamLast”
 };

 /* Fetch the first three records (at most) from the start
 ** of the result set.
 */
 ModuleFetchResult result = parties.Fetch("start", 0, 3,
 columns);
 Console.WriteLine("count: {0}", result.Count);
 Console.WriteLine("hits: {0}", result.Hits);
 Console.WriteLine("rows:");
 Map[] rows = result.Rows;
 for (int i = 0; i < rows.Length; i++)
 {
 Map row = rows[i];
 int rownum = row.GetInt("rownum");
 long irn = row.getLong("irn");
 string first = row.GetString("NamFirst");
 string last = row.GetString("NamLast");

 Console.WriteLine(" [{0}]", i);
 Console.WriteLine(" rownum: {0}", rownum);
 Console.WriteLine(" irn: {0}", irn);
 Console.WriteLine(" NamFirst: {0}", first);
 Console.WriteLine(" NamLast: {0}", last);
 }
}
catch (Exception e)
{
 …
}

Accessing an EMu Module

 Page 29

VB
Imports IMu
…
Try
 Dim mySession = New Session("server.com", 12345)

 Dim parties = New IMu.Module("eparties", mySession)

 ' Find all party records where Last Name contains 'smith'
 '
 Dim search = New Terms
 search.Add("NamLast", "Smith")
 Dim hits = parties.FindTerms(search)

 ' We want to fetch the irn, NamFirst and NamLast
 ' columns for each record
 '
 Dim columns() =
 {
 "irn",
 "NamFirst",
 "NamLast"
 }

 ' Fetch the first three records (at most) from the start
 ' of the result set.
 '
 Dim result = parties.Fetch("start", 0, 3, columns)
 Console.WriteLine("count: {0}", result.Count)
 Console.WriteLine("hits: {0}", result.Hits)
 Console.WriteLine("rows:")
 Dim rows = result.Rows
 For i = 0 To rows.Length - 1
 Dim row = rows(i)
 Dim rownum As Integer = row.GetInt("rownum")
 Dim irn As Long = row.GetLong("irn")
 Dim first As String = row.GetString("NamFirst")
 Dim last As String = row.GetString("NamLast")

 Console.WriteLine(" [{0}]", i)
 Console.WriteLine(" rownum: {0}", rownum)
 Console.WriteLine(" irn: {0}",irn)
 Console.WriteLine(" NamFirst: {0}", first)
 Console.WriteLine(" NamLast: {0}", last)
 Next
Catch ex As Exception
 …
End Try

Accessing an EMu Module

Page 30

The output of this code will be similar to:
count: 3
hits: 12
rows:
 [0]
 rownum: 1
 irn: 722
 NamFirst: Chris
 NamLast: SMITH
 [1]
 rownum: 2
 irn: 723
 NamFirst: Brad
 NamLast: Smith
 [2]
 Rownum: 3
 irn: 724
 NamFirst: Sylvia
 NamLast: Smith

Notice that data for each row includes the irn, NamFirst and NamLast elements,
which correspond to the columns requested. Also notice that a rownum element is
included. This element contains the number of the record within the result set
(starting from 1) and is always included in the retrieved records.

Nested tables are returned as arrays of strings. For example, if a columns argument
of:
"NamLast;NamFirst;NamRoles_tab"

is passed, the loop from the previous example can be modified as follows:
C#

for (int i = 0; i < rows.Length; i++)
{
 Map row = rows[i];
 …
 string[] roles = row.GetStrings("NamRoles_tab");
 for (int j = 0; j < roles.Length; j++)
 Console.WriteLine(" NamRoles_tab[{0}]: {1}", j, roles[j]);
}

VB
For i = 0 To rows.Length - 1
 Dim row = rows(i)
 …
 Dim roles = row.GetStrings("NamRoles_tab")
 For j = 0 To roles.Length - 1
 Console.WriteLine(" NamRoles_tab[{0}]: {1}", j, roles(j))
 Next
Next

Accessing an EMu Module

 Page 31

The output of this code will be similar to:
rows:
 [0]
 rownum: 1
 irn: 722
 NamFirst: Chris
 NamLast: SMITH
 NamRoles_tab[0]: Lyricist
 NamRoles_tab[1]: Pianist
…

Accessing an EMu Module

Page 32

Attachments

The set of columns requested can be more than simple column names. Columns
from modules which the current record attaches to can also be requested. For
example, suppose that the Catalog module documents the creator of an object as an
attachment (to a record in the Parties module) in a column called CatCreatorRef. If
the Catalog module is searched, it is possible to get the creator's last name for each
Catalog record in the result set as follows:
"CatCreatorRef.NamLast"

This technique can be extended to get information for more than one column:
"CatCreatorRef.(NamTitle;NamLast;NamFirst)"

The values are returned in a nested Map:
C#

for (int i = 0; i < rows.Length; i++)
{
 Map row = rows[i];
 …
 Map creator = row.GetMap("CreCreatorRef");
 string first = creator.GetString("NamFirst");
 string last = creator.GetString("NamLast");

 Console.WriteLine(" Creator First Name {0}", first);
 Console.WriteLine(" Creator Last Name {0}", last);
}

VB
For i = 0 To rows.Length - 1
 Dim row = rows(i)
 …
 Dim creator = row.GetMap("CreCreatorRef")
 Dim first = creator.GetString("NamFirst")
 Dim last = creator.GetString("NamLast")

 Console.WriteLine(" Creator First Name {0}", first)
 Console.WriteLine(" Creator Last Name {0}", last)
Next

Accessing an EMu Module

 Page 33

Reverse Attachments

In addition to standard attachment columns, it is possible to request information from
so-called reverse attachments. A reverse attachment refers to one or more records
which attach to the current record.

For example, to retrieve information from a set of Catalog records which attach to the
current Parties record via the Catalog's CatCreatorRef column, specify:
"<ecatalogue:CatCreatorRef>.(irn,TitMainTitle)"

The following code fragment retrieves Parties IRN 53 and displays the CatCreatorRef
reverse attachments:

C#
Module parties = new Module("eparties", mySession);
long hits = parties.FindKey(53);

string[] columns =
{
 "irn",
 "NamFirst",
 "NamLast",
 "<ecatalogue:CatCreatorRef>.(irn,TitMainTitle)"
};

ModuleFetchResult result = parties.Fetch("start", 0, 1, columns);

VB
Dim parties = New IMu.Module("eparties", mySession)
Dim hits = parties.FindKey(53)

Dim columns()=
 {
 "irn",
 "NamFirst",
 "NamLast",
 "<ecatalogue:CatCreatorRef>.(irn,TitMainTitle)"
 }

Dim result = parties.Fetch("start", 0, 1, columns)

The reverse attachments are returned as an array of Maps:

Accessing an EMu Module

Page 34

C#
Map[] rows = result.GetRows();
for (int i = 0; i < rows.Length; i++)
{
 Map row = rows[i];
 …
 Map[] att = row.GetMaps("ecatalogue:CatCreatorRef");
 for (int j = 0; j < att.length; j++)
 {
 Console.WriteLine("Row {0}, Reverse Attachment {1}", i, j);

 string title = att[j].GetString("TitMainTitle");

 Console.WriteLine(" title: {0}", title);
 }
}

VB
Dim rows = result.GetRows();
For i = 0 To rows.Length - 1
 Map row = rows(i);
 …
 Dim att = row.GetMaps("ecatalogue:CatCreatorRef")
 For j = 0 To att.Length - 1
 Console.WriteLine("Row {0}, Reverse Attachment {1}", i, j);

 Dim title = att(j).GetString("TitMainTitle");

 Console.WriteLine(" title: {0}", title);
 Next
Next

Accessing an EMu Module

 Page 35

Rename a Column

It is possible to rename any column when it is returned by adding the new name in
front of the real column being requested, followed by an equals sign.

For example, to request data from the NamLast column but rename it as last_name,
specify:
"last_name=NamLast"

The returned Map will contain an element called last_name rather than NamLast.

This is particularly useful for complicated reverse attachment names:
"objects=<ecatalogue:CatCreatorRef>.(SummaryData)"

Accessing an EMu Module

Page 36

Grouping a set of nested table columns

A set of nested table columns can be grouped. Grouping allows the association
between the columns to be reflected in the structure of the data returned. Consider
the Contributors grid on the Details tab of the Narratives module, which contains
two columns:

• NarContributorRef_tab
which contains a set of attachments to records in the Parties module.

• NarContributorRole_tab
which contains the roles for the corresponding contributors.

Each column can be retrieved separately as follows:
C#

Module narratives = new Module("enarratives", mySession);

narratives.FindKey(2);

string[] columns =
{
 "irn",
 "NarTitle",
 "NarContributorRef_tab.SummaryData",
 "NarContributorRole_tab"
};

ModuleFetchResult result = narratives.Fetch("start", 0, 1,
 columns);
Map[] rows = result.Rows;
for (int i = 0; i < rows.Length; i++)
{
 Map row = rows[i];

 Map[] names = row.GetMaps("NarContributorRef_tab");
 for (int j = 0; j < names.Length; j++)
 {
 string summary = names[j].GetString("SummaryData");
 Console.WriteLine("Name {0}: {1}", j, summary);
 }

 string[] roles = row.GetStrings("NarContributorRole_tab");
 for (int j = 0; j < roles.Length; j++)
 Console.WriteLine("Role {0}: {1}", j, roles[j]);
}

Accessing an EMu Module

 Page 37

VB
Dim narratives = New IMu.Module("enarratives", mySession)

narratives.FindKey(2)

Dim columns() =
 {
 "irn",
 "NarTitle",
 "NarContributorRef_tab.SummaryData",
 "NarContributorRole_tab"
 }

Dim result = narratives.Fetch("start", 0, 1, columns)
Dim rows = result.Rows
For i = 0 To rows.Length - 1
 Dim row = rows(i)

 Dim names = row.GetMaps("NarContributorRef_tab")
 For j = 0 To names.Length - 1
 Dim summary = names(j).GetString("SummaryData")
 Console.WriteLine("Name {0}: {1}", j, summary)
 Next

 Dim roles = row.GetStrings("NarContributorRole_tab")
 For j = 0 To roles.Length - 1
 Console.WriteLine("Role {0}: {1}", j, roles(j))
 Next
Next

This produces output such as:
Name 0: Rising, John
Name 1: Graham, Beverley
Role 0: Artist
Role 1: Author

Although this works fine, the relationship between the contributor and his or her role
is unclear. Grouping can make the relationship far clearer.

To group the columns, surround them with square brackets:
"[NarContributorRef_tab.SummaryData,NarContributorRole_tab]"

With this single change the previous code fragment looks like this:

Accessing an EMu Module

Page 38

C#
Module narratives = new Module("enarratives", mySession);

narratives.FindKey(2);

string[] columns =
{
 "irn",
 "NarTitle",
 "[NarContributorRef_tab.SummaryData,NarContributorRole_tab]"
};

ModuleFetchResult result = narratives.Fetch("start", 0, 1,
 columns);
Map[] rows = result.Rows;
for (int i = 0; i < rows.Length; i++)
{
 Map row = rows[i];

 Map[] group = row.GetMaps("group1");
 for (int j = 0; j < group.Length; j++)
 {
 Map contrib = group[j].GetMap("NarContributorRef_tab");
 string name = contrib.GetString("SummaryData");

 string role = group[j].GetString("NarContributorRole_tab");

 Console.WriteLine("Contributor {0}: Name {1}; Role {2}",
 j, name, role);
 }
}

Accessing an EMu Module

 Page 39

VB
Dim narratives = New IMu.Module("enarratives", mySession)

narratives.FindKey(2)

Dim columns() =
 {
 "irn",
 "NarTitle",
 "[NarContributorRef_tab.SummaryData,NarContributorRole_tab]"
 }

Dim result = narratives.Fetch("start", 0, 1, columns)
Dim rows = result.Rows
For i = 0 To rows.Length - 1
 Dim row = rows(i)

 Dim group = row.GetMaps("group1")
 For j = 0 To group.Length - 1
 Dim contrib = group(j).GetMap("NarContributorRef_tab")
 Dim name = contrib.GetString("SummaryData")

 Dim role = group(j).GetString("NarContributorRole_tab")
 Console.WriteLine("Contributor {0}: Name {1}; Role {2}",
 j, name, role)
 Next
Next

This produces output such as:
Contributor 0: Name Rising, John; Role Artist
Contributor 1: Graham, Beverley; Role Author

By default, the group is given a name of group1, group2 and so on, which can be
changed easily enough:
"contributors=[NarContributorRef_tab.SummaryData,
 NarContributorRole_tab]"

Accessing an EMu Module

Page 40

Column Sets

Every time Fetch is called and a set of columns to retrieve is passed, the IMu server
must parse these columns and check them against the EMu schema. For complex
column sets, particularly those involving several references or reverse references,
this can take time.

If Fetch will be called several times with the same set of columns, it is a good idea to
register the set of columns once and then simply pass the name of the registered set
each time Fetch is called.

Module’s AddFetchSet method is used to register a set of columns. This method
takes two arguments:

• The name of the column set.
• The set of columns to be associated with that name.

For example:
C#

string[] columns =
{
 "irn",
 "NamFirst",
 "NamLast"
};
parties.AddFetchSet("PersonDetails", columns);

VB
Dim columns() =
 {
 "irn",
 "NamFirst",
 "NamLast"
 }
parties.AddFetchSet("PersonDetails", columns)

This registers the set of columns with the IMu server and gives it the name
PersonDetails. This name can then be passed to any call to Fetch and the same
set of columns will be returned:

C#
parties.Fetch("start", 0, 5, "PersonDetails");

VB
parties.Fetch("start", 0, 5, "PersonDetails")

More than one set can be registered at once using AddFetchSets. Simply build an
associative array containing each set:

Accessing an EMu Module

 Page 41

C#
Map sets = new Map();
sets.Add("PersonDetails", "irn;NamFirst;NamLast");
sets.Add("OrganisationDetails", "irn;NamOrganisation");
parties.AddFetchSets(sets);

VB
Dim sets = New Map
sets.Add("PersonDetails", "irn;NamFirst;NamLast")
sets.Add("OrganisationDetails", "irn;NamOrganisation")
parties.AddFetchSets(sets)

Using column sets is very useful when maintaining state (page 67).

Accessing an EMu Module

Page 42

A Simple Example
In this example we build a simple Windows Forms based .Net program to search the
Parties module by Summary Data and display the full set of results in a grid. The
form looks like this:

The form design consists of separate Search and Results group boxes.

The Search group box contains a Label, a TextBox (searchTextBox) and a Button
(searchButton).

The Results group box contains a DataGridView (resultsView).

The grid contains two DataGridViewTextBoxColumns. The first has a Caption of
"Party Type" and a DataPropertyName of "NamPartyType". The second has a
Caption of "Summary Data" and a DataPropertyName of "SummaryData".

The grid is not initially bound to a DataSource. The binding is created in code.

Here is the entire code for managing the form and displaying data:

Accessing an EMu Module

 Page 43

C#
using System;
using System.Data;
using System.Windows.Forms;

using IMu;

namespace Example
{
 public partial class ExampleForm : Form
 {
 public ExampleForm()
 {
 InitializeComponent();

 try
 {
 // Connect to an IMu server
 //
 mySession = new Session("server.com", 12345);
 mySession.Connect();

 // Create a new Module handler
 //
 parties = new Module("eparties", mySession);

 // Create a table to bind to the data grid
 //
 resultsTable = new DataTable();
 resultsTable.Columns.Add("NamPartyType");
 resultsTable.Columns.Add("SummaryData");

 // and attach it to the grid
 resultsView.DataSource = resultsTable;
 }
 catch (Exception e)
 {
 MessageBox.Show(e.ToString(), "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Asterisk);
 return;
 }
 }

 private Session mySession;
 private Module parties;
 private DataTable resultsTable;

 // This handler simply prevents the Search button being
 // pressed until some text has been entered in the text box
 //
 private void searchNameTextBox_TextChanged(object sender,
 EventArgs e)
 {
 searchButton.Enabled = searchNameTextBox.Text.Length > 0;

Accessing an EMu Module

Page 44

 }

 // This handler does the real work.
 // The handler is invoked when the Search button is
 // clicked
 private void searchButton_Click(object sender, EventArgs e)
 {
 // Clear any previous results
 //
 resultsTable.Rows.Clear();

 // Build and run a simple IMu search
 //
 Terms search = new Terms();
 search.Add("SummaryData", searchNameTextBox.Text);
 long hits = parties.FindTerms(search);

 // Fetch the entire set of results
 //
 string columns = "NamPartyType;SummaryData";
 ModuleFetchResult result = parties.Fetch("start", 0, -1,
 columns);

 // Process each row
 //
 for (int i = 0; i < result.Rows.Length; i++)
 {
 // Get the appropriate IMu row from the returned data
 //
 Map row = result.Rows[i];

 // Create a new row in the table bound to
 // the grid
 DataRow data = resultsTable.NewRow();

 // Populate the row with data returned by the IMu server
 //
 data["NamPartyType"] = row["NamPartyType"];
 data["SummaryData"] = row["SummaryData"];

 // Add the row to the data source
 // It will appear on the grid
 resultsTable.Rows.Add(data);
 }
 }
 }
}

Accessing an EMu Module

 Page 45

VB
Imports IMu

Public Class ExampleForm
 Public Sub New()
 InitializeComponent()

 Try
 ' Connect to an IMu server
 '
 mySession = New Session("server.com", 12345)
 mySession.Connect()

 ' Create a new Module handler
 '
 parties = New IMu.Module("eparties", mySession)

 ' Create a table to bind to the data grid
 '
 resultsTable = New DataTable()
 resultsTable.Columns.Add("NamPartyType")
 resultsTable.Columns.Add("SummaryData")

 ' and attach it to the grid
 '
 resultsView.DataSource = resultsTable
 Catch ex As Exception
 MessageBox.Show(ex.ToString(), "Error",
 MessageBoxButtons.OK, MessageBoxIcon.Asterisk)
 Exit Sub
 End Try
 End Sub

 Private mySession As Session
 Private parties As IMu.Module
 Private resultsTable As DataTable

 ' This handler simply prevents the Search button being
 ' pressed until some text has been entered in the text box
 '
 Private Sub searchNameTextBox_TextChanged(ByVal sender As
 System.Object, ByVal e As System.EventArgs)
 Handles searchNameTextBox.TextChanged
 searchButton.Enabled = searchNameTextBox.Text.Length > 0
 End Sub

 ' This handler does the real work.
 ' The handler is invoked when the Search button is
 ' clicked
 Private Sub searchButton_Click(ByVal sender As System.Object,
 ByVal e As System.EventArgs) Handles searchButton.Click
 ' Clear any previous results
 '
 resultsTable.Rows.Clear()

Accessing an EMu Module

Page 46

 ' Build and run a simple IMu search
 '
 Dim search = New Terms
 search.Add("SummaryData", searchNameTextBox.Text)
 Dim hits = parties.FindTerms(search)

 ' Fetch the entire set of results
 '
 Dim columns = "NamPartyType;SummaryData"
 Dim result = parties.Fetch("start", 0, -1, columns)

 ' Process each row
 '
 For i = 0 To result.Rows.Length - 1
 ' Get the appropriate IMu row from the returned data
 '
 Dim row = result.Rows(i)

 ' Populate the row with data returned by the IMu server
 '
 Dim data = resultsTable.NewRow()

 ' Populate the row with data returned by the IMu server
 '
 data("NamPartyType") = row("NamPartyType")
 data("SummaryData") = row("SummaryData")

 ' Add the row to the data source
 ' It will appear on the grid
 resultsTable.Rows.Add(data)
 Next
 End Sub
End Class

The program is fairly straightforward. The forms constructor connects to an IMu
server and creates a new instance of the IMu Module class to handle searching the
Parties module.

The constructor also creates a very simple data source containing two columns and
ties it to the data gird.

The Search button's click event handler does the real work. It clears the data grid of
any previous results and then builds and submits a very simple IMu search,
searching the SummaryData column for the value in the Text Box.

The handler then retrieves all the matching rows and process each one in turn. For
each row, it adds a new DataRow and populates its columns with the corresponding
values returned by the IMu server. Finally it adds this new row to the data source,
which causes it to be displayed by the data grid.

Accessing an EMu Module

 Page 47

This program is quite rudimentary. It has little to no error handling and it does nothing
to try to page the results coming back from the IMu server. However, it does illustrate
many aspects of using IMu.

Accessing an EMu Module

Page 48

Sorting
The matching set of results can be sorted using Module's Sort method. This method
takes two arguments:

• keys
• flags

Accessing an EMu Module

 Page 49

keys
The columns argument is used to specify the columns by which to sort the result set.
The argument can be either a simple string, array of strings or a List of strings.
Each string can be a simple column name or a set of column names, separated by
semi-colons or commas. Each column name can be preceded by a + or –. A leading
+ indicates that the records should be sorted in ascending order. A leading –
indicates that the records should be sorted in descending order.

For example, to sort a set of Parties records first by Party Type (ascending), then
Last Name (descending) and then First Name (ascending):

C#
string keys = "+NamPartyType;-NamLast;+NamFirst";

VB
Dim keys = "+NamPartyType;-NamLast;+NamFirst"

-OR-
C#

string keys[] =
{
 "+NamPartyType",
 "-NamLast",
 "+NamFirst"
};

VB
Dim keys() =
 {
 "+NamPartyType",
 "-NamLast",
 "+NamFirst"
 }

-OR-
C#

List<string> keys = new List<string>();
keys.Add("+NamPartyType");
keys.Add("-NamLast");
keys.Add("+NamFirst");

VB
Dim keys = New List(Of String)
keys.Add("+NamPartyType")
keys.Add("-NamLast")
keys.Add("+NamFirst")

 If a sort order (+ or -) is not given, the sort order defaults to ascending.

Accessing an EMu Module

Page 50

flags
The flags argument is used to pass one or more flags to control the way the sort is
carried out. As with the keys argument, the flags argument can be a simple string,
an array of strings or a List of strings. Each string can be a single flag or a set of
flags separated by semi-colons or commas.

The following flags control the type of comparisons used when sorting:

"word-based" Sort disregards all punctuation and white spaces (more than the
one space between words). For example:
Traveler's Inn
will be sorted as
Travelers Inn

"full-text" Sort includes all punctuation and white spaces. For example:
Traveler's Inn
will be sorted as
Traveler's Inn
and will therefore differ from:
Traveler's Inn

"compress-spaces" Sort includes punctuation but disregards all white space (with
the exception of a single space between words). For example:
Traveler's Inn
will be sorted as
Traveler's Inn

 If none of these flags is included, the comparison defaults to "word-based".

Accessing an EMu Module

 Page 51

The following flags modify the sorting behavior:

"case-sensitive" Sort is sensitive to upper and lower case. For example:
Melbourne gallery
will be sorted separately to
Melbourne Gallery

"order-
insensitive"

Values in a multi-value field will be sorted alphabetically
regardless of the order in which they display. For example, a
record which has the following values in the NamRoles_tab
column in this order:
Collection Manager
Curator
Internet Administrator
and another record which has the values in this order:
Internet Administrator
Collection Manager
Curator
will be sorted the same.

"null-low" Records with empty records will be placed at the start of the
result set rather than at the end.

"extended-sort" Values that include diacritics will be sorted separately to those
that do not. For example, entrée will be sorted separately to
entree.

Accessing an EMu Module

Page 52

The following flags can be used when generating a summary of the sorted records:

"report" A summary of the sort is generated. The summary is contained
in a ModuleSortResult object. The result is hierarchically
structured, summarising the number of records which match
each of the sort keys. See the example (page 54) for an
illustration of the structure.

"table-as-text" All data from multi-valued columns will be treated as a single
value (joined by line break characters) in the summary results
array.
For example, for a record which has the following values in the
NamRoles_tab column:
Collection Manager, Curator, Internet Administrator
the summary will include statistics for a single value:
Collection Manager
Curator
Internet Administrator
Thus the number of values in the summary results display will
match the number of records.
If this option is not included, each value in a multi-valued column
will be treated as a distinct value in the summary. Thus there
may be many more values in the summary results than there are
records.

Accessing an EMu Module

 Page 53

Return Value
The Sort method returns null unless the report flag is used.

If the report flag is used, the Sort method returns a ModuleSortResult object.
This object contains two read-only properties:

• Count (an integer).
• Terms (an array of ModuleSortTerm objects).

The Count property is the number of distinct terms in the primary sort key.

The Terms property is an array containing the list of distinct terms associated with the
primary key in the sorted result set.

Each element in the Terms array is a ModuleSortTerm object. This object contains
three read-only properties which describe the term:

• Value (a string).
• Count (a long integer).
• Nested (a ModuleSortResult object).

The Value property is the distinct value itself.

The Count property is the number of records in the result set which have this value.

The Nested property is a nested ModuleSortResult object. This holds values for
secondary sorts within the primary sort. This is illustrated in the following example:

Accessing an EMu Module

Page 54

Example
In this example we run a three-level sort on a set of Parties records, sorting first by
Party Type, then Last Name (descending) and then by First Name. Setting up and
running the sort is straightforward:

C#
Module parties = new Module("eparties", …);
…
parties.FindTerms(…);
…
string[] keys =
{
 "+NamPartyType",
 "-NamLast",
 "+NamFirst"
};
string[] flags =
{
 "full-text",
 "case-sensitive",
 "report"
};
ModuleSortResult result = parties.Sort(keys, flags);

VB
Dim parties = New IMu.Module("eparties", …)
…
parties.FindTerms(…)
…
Dim keys() =
 {
 "+NamPartyType",
 "-NamLast",
 "+NamFirst"
 }
Dim flags() =
 {
 "full-text",
 "case-sensitive",
 "report"
 }
Dim result = parties.Sort(keys, flags)

We can write a simple method to display the result summary. This example displays
the distinct terms (and their counts) for the primary sort key (Party Type). Nested
within each primary term is the set of distinct terms for the secondary key (Last
Name) and nested within this list is the set of distinct terms for the tertiary key (First
Name).

This is most simply done by making the display method recursive. The showSummary
method below illustrates how to walk the ModuleSortResult structure:

Accessing an EMu Module

 Page 55

C#
private void
showSummary(ModuleSortResult result, int indent)
{
 // Build a prefix string to indent the data correctly
 //
 string prefix = "";
 for (int i = 0; i < indent; i++)
 prefix += " ";

 // Display each term at this level
 for (int i = 0; i < result.Terms.Length; i++)
 {
 ModuleSortTerm term = result.Terms[i];

 // Print out the value and count properties for the term,
 // indented appropriately
 //
 Console.WriteLine("{0}{1:d2}. \"{2}\" ({3})",
 prefix, i, term.Value, term.Count);

 // If the nested property is defined then there are
 // further values for secondary, tertiary keys and so on
 // so we call showSummary recursively.
 //
 if (term.Nested != null)
 showSummary(term.Nested, indent + 1);
 }
}

Accessing an EMu Module

Page 56

VB
Private Sub showSummary(ByVal result As ModuleSortResult,
 ByVal indent As Integer)
 ' Build a prefix string to indent the data correctly
 '
 Dim prefix = ""
 For i = 0 To indent - 1
 prefix += " "
 Next

 ' Display each term at this level
 '
 For i = 0 To result.Terms.Length - 1
 Dim term = result.Terms(i)

 ' Print out the value and count properties for the term,
 ' indented appropriately
 '
 Console.WriteLine("{0}{1:d2}. ""{2}"" ({3})",
 prefix, i, term.Value, term.Count)

 ' If the nested property is defined then there are
 ' further values for secondary, tertiary keys and so on
 ' so we call showSummary recursively.
 '
 If term.Nested IsNot Nothing Then
 showSummary(term.Nested, indent + 1)
 End If
 Next
End Sub

This will produce output similar to the following:
"Person" (2086)
 0. "Young" (4)
 0. "Derek" (1)
 1. "Don" (1)
 …
 1. "Williams" (5)
 0. "Arthur" (1)
 1. "John" (2)
…

Accessing an EMu Module

 Page 57

Multimedia
The multimedia resources associated with an EMu record can be retrieved using
Module's Fetch method by specifying a special column called multimedia. When
this column is requested the server returns the set of multimedia attachments
associated with the record in question.

The set is returned as an array of Map objects. Each map includes the following
information:

• irn
The irn of the resource in EMu's Multimedia module.

• type
The media type: typically image, audio, video, etc.

• format
The media format or sub-type such as jpeg or tiff for image formats, wav or
mpeg for audio.

This is equivalent to the column request:
multimedia=MulMultiMediaRef_tab.
(
 irn,
 type=MulMimeType,
 format=MulMimeFormat
)

with the addition that the result does not contain any empty entries (i.e. entries
corresponding to null values in the MulMultiMediaRef_tab column) or any entries for
Multimedia records which are not accessible via IMu.

For example:

Accessing an EMu Module

Page 58

C#
Session mySession = new Session("server.com", 12345);
mySession.Connect();

Module parties = new Module("eparties", mySession);

// Build the search and run it
Terms search = new Terms();
search.Add("NamLast", "Pavarotti");
parties.FindTerms(search);

// Build list of columns to fetch
string[] columns =
{
 "NamFirst",
 "NamLast",
 "multimedia"
};

// We are only interested in the first record
ModuleFetchResult result = parties.fetch("start", 0, 1, columns);
Map row = result.Rows[0];

// Display the results
String first = row.getString("NamFirst");
String last = row.getString("NamLast");
Map[] multimedia = row.getMaps("multimedia");

Console.WriteLine("First Name: {0}", first);
Console.WriteLine("Last Name: {0}", last);
Console.WriteLine("multimedia ({0})", multimedia.Length);
for (int i = 0; i < multimedia.Length; i++)
{
 Map entry = multimedia[i];

 long irn = entry.getLong("irn");
 String type = entry.getString("type");
 String format = entry.getString("format");

 Console.WriteLine(" irn {0}: {1}/{2}", irn, type, format);
}

Accessing an EMu Module

 Page 59

VB
Dim mySession = New Session("lygon", 40136)
mySession.Connect()

Dim parties = New IMu.Module("eparties", mySession)

' Build the search and run it
Dim search = New Terms
search.Add("NamLast", "Pavarotti")
parties.FindTerms(search)

' Build list of columns to fetch
Dim columns() =
 {
 "NamFirst",
 "NamLast",
 "multimedia"
 }

' We are only interested in the first record
Dim result = parties.Fetch("start", 0, 1, columns)
Dim row = result.Rows(0)

' Display the results
Dim first = row.GetString("NamFirst")
Dim last = row.GetString("NamLast")
Dim multimedia = row.GetMaps("multimedia")

Console.WriteLine("First Name: {0}", first)
Console.WriteLine("Last Name: {0}", last)
Console.WriteLine("multimedia ({0})", multimedia.Length)
For i = 0 To multimedia.Length - 1
 Dim entry = multimedia(i)

 Dim irn = entry.GetLong("irn")
 Dim type = entry.GetString("type")
 Dim format = entry.GetString("format")

 Console.WriteLine(" irn {0}: {1}/{2}", irn, type, format)
Next

Accessing an EMu Module

Page 60

will produce output such as:
First Name: Luciano
Last Name: PAVAROTTI
multimedia (11)
 irn 100096: image/gif
 irn 100100: image/gif
 irn 100101: image/gif
 irn 100102: image/gif
 irn 100105: image/jpeg
 irn 100095: video/quicktime
 irn 100103: video/quicktime
 irn 100098: audio/wav
 irn 100099: audio/wav
 irn 100104: audio/wav
 irn 100097: application/msword

The multimedia column is an example of an IMu "virtual" column. The column does
not actually exist in the EMu table being accessed. Instead, the IMu server interprets
the request for the column and builds an appropriate response. There are other
virtual columns that can be used when accessing a record's multimedia attachments:

• images
This returns the subset of multimedia attachments which have a mime type of
image. Like multimedia, this is returned as an array of Map objects.

• image
The preferred image from the set of images. Currently this is the same as the
first entry in the array returned by images. However, future versions of EMu may
allow another multimedia attachment to be flagged as the preferred image, in
which case the image column will return information for the preferred resource,
rather than the first one. This is returned as a single Map object.

• videos
This returns the subset of multimedia attachments which have a mime type of
video.

• video
The preferred video from the set of videos. Currently this is the same as the first
entry in the array returned by videos.

All these virtual columns act as reference columns into the Multimedia module. This
means that other Multimedia columns can also be requested from the corresponding
Multimedia record. For example, to include the publisher (DetPublisher) in the
information returned for each attached multimedia resource:
multimedia.DetPublisher

The returned Maps will include a DetPublisher entry as well as the standard irn,
type and format entries.

Any standard columns from the Multimedia module can be requested in this way. In
addition, the Multimedia module includes a virtual column, resource, which can be
used get access to the contents of the actual multimedia resource. The resource

Accessing an EMu Module

 Page 61

column is returned as a Map object. The object includes the following information:

• identifier
The contents of the multimedia record's MulIdentifier field.

• mimeType
The media type: typically image, audio, video, etc.

• mimeFormat
The media format or sub-type such as jpeg or tiff for image formats, wav or
mpeg for audio.

• size
The size of the resource in bytes.

• file
A FileStream object. This provides a read-only handle to a temporary copy of
the resource itself. The FileStream object has been opened with the
FileOptions.DeleteOnClose flag. This ensures that the temporary copy of the
file is discarded when the stream is closed or destroyed.

• height
For images, the height of the image in pixels.

• width
For images, the width of the image in pixels.

The following code fragment retrieves Parties IRN 53, displays the information for its
preferred attached image and creates a copy of the resource in a file called image-
copy:

Accessing an EMu Module

Page 62

C#
Module parties = new Module("eparties", mySession);
long hits = parties.FindKey(53);

string[] columns =
{
 "NamFirst",
 "NamLast",
 "image.resource"
};

ModuleFetchResult result = parties.Fetch("start", 0, 1, columns);

// Because we did a findKey() search, we are only
// interested in the first row.
//
Map row = result.Rows[0];

Map image = row.GetMap("image");
Map resource = image.GetMap("resource");

// Print out information about the resource
//
string identifier = resource.GetString("identifier");
string mimeType = resource.GetString("mimeType");
string mimeFormat = resource.GetString("mimeFormat");
long size = resource.GetLong("size");

Console.WriteLine("identifier: {0}", identifier);
Console.WriteLine("mimeType: {0}", mimeType);
Console.WriteLine("mimeFormat: {0}", mimeFormat);
Console.WriteLine("size: {0}", size);

// Save a copy of the resource
//
FileStream temp = resource["file"] as FileStream;
FileStream copy = new FileStream("image-copy", FileMode.Create,
 FileAccess.Write);
byte[] buffer = new byte[4096]; // 4K buffer
for (;;)
{
 int n = temp.Read(buffer, 0, 4096);
 if (n <= 0)
 break;
 copy.Write(buffer, 0, n);
}
copy.Close();

Accessing an EMu Module

 Page 63

VB
Dim parties = New IMu.Module("eparties", mySession)
Dim hits = parties.FindKey(53)

Dim columns() =
 {
 "NamFirst",
 "NamLast",
 "image.resource"
 }

Dim result = parties.Fetch("start", 0, 1, columns)

' Because we did a findKey() search, we are only
' interested in the first row.
'
Dim row = result.Rows(0)

Dim image = row.GetMap("image")
Dim resource = image.GetMap("resource")

' Print out information about the resource
'
Dim identifier = resource.GetString("identifier")
Dim mimeType = resource.GetString("mimeType")
Dim mimeFormat = resource.GetString("mimeFormat")
Dim size = resource.GetLong("size")

Console.WriteLine("identifier: {0}", identifier)
Console.WriteLine("mimeType: {0}", mimeType)
Console.WriteLine("mimeFormat: {0}", mimeFormat)
Console.WriteLine("size: {0}", size)

' Save a copy of the resource
'
Dim temp = TryCast(resource("file"), FileStream)
Dim copy = New FileStream("image-copy", FileMode.Create,
 FileAccess.Write)
Dim buffer(4096) As Byte ' 4K buffer
While True
 Dim n = temp.Read(buffer, 0, 4096)
 If n <= 0 Then
 Exit While
 End If
 copy.Write(buffer, 0, n)
End While
copy.Close()

This will produce output similar to:
identifier: LucianoPavarotti.gif
mimeType: image
mimeFormat: gif
size: 19931

Accessing an EMu Module

Page 64

as well as creating a file called image-copy which contains the copy of the image
itself.

The previous example retrieves a binary copy of the master resource in its original
format. It is also possible to modify how the resource is returned. This is done by
adding modifiers to the resource column request. Modifiers are added after the
column name and inside a set of braces.

The modifiers which can be applied to the resource column are:

• encoding
Specifies that the resource returned should be encoded. The only currently
supported encoding is base64. By default the resource is returned as raw binary
data.
Example:

 resource{encoding:base64}

• checksum
Specifies that the information returned with the resource should include a
checksum. The checksum requested can be crc32 or md5.
Example:

 resource{checksum:crc32}

In addition other modifiers can be applied to image resources:

• format
Specifies the format of the required image. If the master image is already in the
required format, then it is returned. Otherwise the image is reformatted on-the-fly
and the reformatted image is returned.
Example:

 resource{format:gif}
This requests that the imaged is returned as a gif.
The IMu server uses ImageMagick to process the image and the range of
supported formats is very large. The complete list is available from:
http://www.imagemagick.org/script/formats.php

• height
Specifies the height of the image required in pixels. If the record contains a
resolution with this height, this resolution is returned. Otherwise the closest
matching larger resolution is resized to the requested height on-the-fly and the
resized image is returned.
Example:

 resource{height:200}

• width
Specifies the width of the image required in pixels. If the record contains a
resolution with this width, this resolution is returned. Otherwise the closest
matching larger resolution is resized to the requested width on-the-fly and the
resized image is returned.
Example:

 resource{width:300}

Accessing an EMu Module

 Page 65

• bestfit
If set to yes, the image returned is the existing resolution which most closely
matches the specified height or width. No on-the-fly resizing is done.
Example:

 resource{height:300,bestfit:yes}
This returns the image closest to, but larger than, 300 pixels high.

• aspectratio
Controls whether the image's aspect ratio should be maintained when both a
height and a width are specified. If set to no, the aspect ratio is not maintained.
Example:

 resource{height:300,width:300,aspectratio:no}

• source
Controls which image is used as the basis for any reformatting that is required.
By default, if no height or width is specified, the master is used as the source
image. However, if a height or width is supplied, then by default the closest sized
but larger resolution is used as the source. This saves processing time but may
not produce the best result when dealing with lossy formats (such as jpeg). To
override this, a source value of master can be specified.
Example:

 resource{height:300,source:master}
This specifies that the image is generated by resizing the master to 300 pixels
high, rather than by using any appropriate resolution.
The source value can also be thumbnail. In this case the image thumbnail is
used as the source. Typically you would not want to apply size transformations
to the thumbnail but this provides a simple way of retrieving the image's 90x90
thumbnail:

 resource{source:thumbnail}

Maintaining State

 Page 67

Maintaining State
One of the biggest drawbacks of the earlier example (page 54) is that it fetches the
full set of results at one time, which is impractical for large result sets. It is more
practical to display a full set of results across multiple pages and allow the user to
move forward or backward through the pages.

This is simple in a conventional application where a connection to the server is
maintained until the user terminates the application. In a web implementation
however, this seemingly simple requirement involves a considerably higher level of
complexity due to the stateless nature of web pages. One such complexity is that
each time a new page of results is displayed, the initial search for the records must
be re-executed. This is inconvenient for the web programmer and potentially slow for
the user.

The IMu server provides a solution to this. When a handler object is created, a
corresponding object is created on the server to service the handler's request: this
server-side object is allocated a unique identifier by the IMu server. When making a
request for more information, the unique identifier can be used to connect a new
handler to the same server-side object, with its state intact.

The following example illustrates the connection of a second, independently created
Module object to the same server-side object:

S E C T I O N 5

Maintaining State

Page 68

C#
// Create a module object as usual
//
Module first = new Module("eparties", mySession);

// Run a search - this will create a server-side object
//
long[] keys = { 1, 2, 3, 4, 5, 42 };
first.FindKeys(keys);

// Get a set of results
//
ModuleFetchResult result1 = first.Fetch("start", 0, 2,
 "SummaryData");

// Create a second module object using the same session
//
Module second = new Module("eparties", first.Session);

// Attach it to the same server-side object as the
// first module. This is the key step.
//
second.ID = first.ID;

// Get a second set of results from the same search
//
ModuleFetchResult result2 = second.Fetch("current", 1, 2,
 "SummaryData");

VB
' Create a module object as usual
'
Dim first = New IMu.Module("eparties", mySession)

' Run a search - this will create a server-side object
'
Dim keys() As Long= { 1, 2, 3, 4, 5, 42 }
first.FindKeys(keys)

' Get a set of results
'
Dim result1 = first.Fetch("start", 0, 2, "SummaryData")

' Create a second module object using the same session
'
Dim second = New IMu.Module("eparties", first.Session)

' Attach it to the same server-side object as the
' first module. This is the key step.
'
second.ID = first.ID

' Get a second set of results from the same search
'
Dim result2 = second.Fetch("current", 1, 2, "SummaryData")

Maintaining State

 Page 69

Although two completely separate Module objects have been created, they are each
connected to the same server-side object by virtue of having the same ID property.
This means that the second Fetch call will access the same result set as the first
Fetch. Notice that a flag of current has been passed to the second call. The
current state is maintained on the server-side object, so in this case the second
call to Fetch will return the third and fourth records in the result set.

While this example illustrates the use of the ID property, it is not particularly realistic
as it is unlikely that two distinct objects which refer to the same server-side object
would be required in the same piece of code. The need to re-connect to the same
server-side object when generating another page of results is far more likely. This
situation involves creating a server-side Module object (to search the module and
deliver the first set of results) in one request and then re-connecting to the same
server-side object (to fetch a second set of results) in a second request. As before,
this is achieved by assigning the same identifier to the ID property of the object in the
second page, but two other things need to be considered.

By default the IMu server destroys all server-side objects when a session finishes.
This means that unless the server is explicitly instructed not to do so, the server-side
object may be destroyed when the connection from the first page is closed. Telling
the server to maintain the server-side object only requires that the Destroy property
on the object is set to false before calling any of its methods. In the example above,
the server would be instructed not to destroy the object as follows:

C#
Module parties = new Module("eparties", mySession);
parties.Destroy = false;
long[] keys = { 1, 2, 3, 4, 5, 42 };
parties.FindKeys(keys);

VB
Dim parties = New IMu.Module("eparties", mySession)
parties.Destroy = False
Dim keys() as Long = { 1, 2, 3, 4, 5, 42 }
parties.FindKeys(keys);

The second point is quite subtle. When a connection is established to a server, it is
necessary to specify the port to connect to. Depending on how the server has been
configured, there may be more than one server process listening for connections on
this port. Your program has no control over which of these processes will actually
accept the connection and handle requests. Normally this makes no difference, but
when trying to maintain state by re-connecting to a pre-existing server-side object, it
is a problem.

For example, suppose there are three separate server processes listening for
connections. When the first request is executed it connects, effectively at random, to
the first process. This process responds to the request, creates a server-side object,
searches the Parties module for the terms provided and returns the first set of
results. The server is told not to destroy the object and passes the server-side
identifier to another page which fetches the next set of results from the same search.

The problem comes when the next page connects to the server again. When the
connection is established any one of the three server processes may accept the

Maintaining State

Page 70

connection. However, only the first process is maintaining the relevant server-side
object. If the second or third process accepts the connection, the object will not be
found.

The solution to this problem is relatively straightforward. Before the first request
closes the connection to its server, it must notify the server that subsequent requests
need to connect explicitly to that process. This is achieved by setting the Session
object's Suspend property to true prior to submitting any request to the server:

C#
Session mySession = new Session("server.com", 12345);
Module parties = new Module("eparties", session);
…
mySession.Suspend = true;
parties.FindKeys(…);

VB
Dim mySession = New Session("server.com", 12345)
Dim parties = new IMu.Module("eparties", session)
…
mySession.Suspend = True
parties.FindKeys(…)

The server handles a request to Suspend a connection by starting to listen for
connections on a second port. Unlike the primary port, this port is guaranteed to be
used only by that particular server process. This means that a subsequent page can
reconnect to a server on this second port and be guaranteed of connecting to the
same server process. This in turn means that any saved server-side object will be
accessible via its identifier. After the request has returned (in this example it was a
call to FindKeys), the Session object's Port property holds the port number to
reconnect to:

C#
mySession.Suspend = true;
module.FindKeys(…);
int reconnect = session.Port;

VB
mySession.Suspend = True
module.FindKeys(…)
Dim reconnect As Integer = session.Port

Exceptions

 Page 71

Exceptions
When an error occurs, the IMu .Net API throws an exception. The exception is an
IMuException object. This is a subclass of .Net's standard Exception class.

For simple error handling all that is usually required is to catch the exception as an
Exception object and report the exception as a string:

C#
try
{
 …
}
catch (Exception e)
{
 Console.Error.WriteLine("Error: {0}", e);
 Environment.Exit(1);
}

VB
Try
 …
Catch ex As Exception
 Console.Error.WriteLine("Error: {0}", ex)
 Environment.Exit(1)
End Try

IMuException overrides the Exception's ToString and returns an error message.

To handle specific IMu errors it is necessary to catch the exception as an
IMuException object. IMuException includes a property called ID. This is a string
and contains the internal IMu error code for the exception. For example, you may
want to catch the exception raised when a Session's Connect method fails and try to
connect to an alternative server:

S E C T I O N 6

Exceptions

Page 72

C#
string mainServer = "server1.com";
string alternativeServer = "server2.com";
Session mySession = new Session();
mySession.Port = …;

// Try the main server first
//
mySession.Host = mainServer;
try
{
 mySession.Connect();
}
catch (IMuException e)
{
 // Check for specific SessionConnect error
 //
 if (! e.ID.Equals("SessionConnect"))
 throw;

 // Now try the alternative server
 //
 mySession.Host = alternativeServer;
 mySession.Connect();
}
// By the time we get to here the session is connected
// to either the main server or the alternative.

VB
Dim mainServer = "server1.com"
Dim alternativeServer = "server2.com"
Dim mySession = New Session
mySession.Port = …

' Try the main server first
'
mySession.Host = mainServer
Try
 mySession.Connect()
Catch ex As IMuException
 ' Check for specific SessionConnect error
 '
 If ex.ID <> "SessionConnect" Then
 Throw
 End If

 ' Now try the alternative server
 '
 mySession.Host = alternativeServer
 mySession.Connect()
End Try
' By the time we get to here the session is connected
' to either the main server or the alternative.

Reference

 Page 73

Reference

S E C T I O N 7

Reference

Page 74

Class Handler
IMu.Handler

Provides a general low-level interface to creating server-side objects.

Constructors
C# public Handler(Session session)

VB Public Sub New(session As Session)

Creates an object which can be used to interact with server-side objects.

Parameters

session A Session object to be used to communicate with
the IMu server.

C# public Handler()

VB Public Sub New()

 Same as constructor above but a new session is created automatically using the
Session class's default host and port values.

Properties

Name C# VB Access Description

Create object object Read/Write An object to be passed to the server when the
server-side object is created. To have any
effect this must be set before any object
methods are called. This property is usually
only set by sub-classes of Handler.

Destroy bool Boolean Read/Write A flag controlling whether the corresponding
server-side object should be destroyed when
the session is terminated.

ID string String Read/Write The unique identifier assigned to the server-
side object once it has been created.

Language string String Read/Write The language to be used in the server.
Name int Integer Read/Write The name of the server-side object to be

created. This must be set before any object
methods are called.

Session Session Session Read-Only The session object used by the handler to
communicate with the IMu server

Methods

Reference

 Page 75

C# public object Call(string method, object parameters)

VB Public Function Call(method As String, parameters As Object)
 As Object

 Calls a method on the server-side object.

Parameters

method The name of the method to be called.

parameters Any parameters to be passed to the method. The
Call method uses .Net's reflection to determine the
structure of the parameters to be transmitted to the
server.

Returns An object containing the result returned by the server-side method.

Throws IMuException if a server-side error occurred.

C# public Object Call(string method)

VB Public Function Call(method As String) As Object

Same as Call above but without any additional parameters.

C# public Map Request(Map request)

VB Public Function Request(request as Map) As Map

 Submits a low-level request to the IMu server. This method is chiefly used by the
Call method above.

Parameters

request A Map object containing the request parameters.

Returns A Map object containing the server's response.

Throws IMuException if a server-side error occurred.

Reference

Page 76

Class IMu
IMu.IMu

Simple class containing general IMu properties. This class cannot be instantiated.

Class constants

Name C# VB Description

VERSION string String The version number of the IMu API.

Reference

 Page 77

Class IMuException
IMu.IMuException

Extends: System.Exception

Class for IMu-specific exceptions.

Constructors
C# public IMuException(string id, params object[] args)

VB Public Sub New(id As String, ParamArray args as Object())

 Creates an IMu-specific exception.

Parameters

id A string exception code.

args Any additional arguments used to provide further
information about the exception.

 public IMuException(String id)

 Same as IMuException above but without any additional arguments.

Properties

Name C# VB Access Description

Args object[] Object() Read/Write A flag controlling whether the
corresponding server-side object
should be destroyed when the session
is terminated.

ID String String Read-Only The unique identifier assigned to the
server-side object once it has been
created.

Methods
C# public String ToString()

VB Public Function ToString() As String

 Overrides the standard Object ToString method.

Returns A string description of the exception.

Reference

Page 78

Class Map
IMu.Map

Extends: System.Collections.Generic.Dictionary<string, object>

Provides a simple map class with string keys and a set of convenience methods for getting
values of certain types.

Methods
C# public bool GetBool(string name)

VB Public Function GetBoolean(name as String) As Boolean

 Gets the value associated with the key name and returns it as a Boolean.

Parameters

name The key whose associated value is to be returned.

Returns The value, interpreted as a Boolean. Null values are considered
false. Numeric values are considered false if they evaluate to zero
and true otherwise. Any other non-Boolean value is converted to a
string and then parsed as a Boolean.

C# public double GetDouble(String name)

VB Public Function GetDouble(name as String) As Double

 Gets the value associated with the key name and returns it as a double precision
floating point number.

Parameters

name The key whose associated value is to be returned.

Returns The value, interpreted as a double precision floating point number.
Null values evaluate to 0. Boolean values evaluate to 0 if false and
1 if true. Any other non-numeric value is converted to a string and
then parsed as a double.

C# public int GetInt(String name)

VB Public Function GetInteger(name As String) as Integer

 Gets the value associated with the key name and returns it as an integer.

Parameters

name The key whose associated value is to be returned.

Returns The value, interpreted as an integer. Null values evaluate to 0.
Boolean values evaluate to 0 if false and 1 if true. Any other non-
numeric value is converted to a string and then parsed as an
integer.

C# public long GetLong(String name)

Reference

 Page 79

VB Public Function GetLong(name As String) As Long

 Gets the value associated with the key name and returns it as a long integer.

Parameters

name The key whose associated value is to be returned.

Returns The value, interpreted as a long integer. Null values evaluate to 0.
Boolean values evaluate to 0 if false and 1 if true. Any other non-
numeric value is converted to a string and then parsed as a long.

C# public Map GetMap(String name)

VB Public Function GetMap(name As String) As Map

 Gets the value associated with the key name and returns it as an IMu Map object.

Parameters

name The key whose associated value is to be returned.

Returns The value, cast to a Map.

C# public Map[] GetMaps(String name)

VB Public Function GetMaps(name As String) As Map()

 Gets the value associated with the key name and returns it as an array of IMu Map
objects.

Parameters

name The key whose associated value is to be returned.

Returns The value, converted to an array of Map objects.

C# public string GetString(String name)

VB Public Function GetString(name As String) As String

 Gets the value associated with the key name and returns it as a string.

Parameters

name The key whose associated value is to be returned.

Returns The value, interpreted as a string. Null values remain null. Any
other non-string value is converted to a string using the object's
ToString method.

Reference

Page 80

C# public string[] GgetStrings(String name)

VB Public Function GetStrings(name As String) As String()

 Gets the value associated with the key name and returns it as an array of strings.

Parameters

name The key whose associated value is to be returned.

Returns The value, converted to an array of strings.

Reference

 Page 81

Class Module
IMu.Module

Extends: IMu.Handler

Provides access to an EMu module.

Constructors
C# public Module(string table, Session session)

VB Public Sub New(table As String, session As Session)

 Creates an object which can be used to access the EMu module specified by
table.

Parameters

table Name of the EMu module to be accessed.

session A Session object to be used to communicate with
the IMu server.

C# public Module(string table)

VB Public Sub New(table As String)

 Same as constructor above but a new session is created automatically using the
Session class's default Host and Port values.

Properties

Name C# VB Access Description

Table string String Read-Only The name of the table associated with
the Module object.

Reference

Page 82

Methods
C# public int AddFetchSet(string name, string columns)

VB Public Function AddFetchSet(name As String, columns As String) As
Integer

 Associates a set of columns with a logical name in the server. The name can be
used instead of a column list when retrieving data using Fetch.

Parameters

name The logical name to associate with the set of
columns.

columns A string containing the names of the columns to be
used when name is passed to Fetch. The column
names must be separated by a semi-colon or a
comma.

Returns The number of sets (including this one) registered in the server.

Throws IMuException if a server-side error occurred.

C# public int AddFetchSet(string name, string[] columns)

VB Public Function AddFetchSet(name As String, columns() As String)
As Integer

 Same as AddFetchSet above but the list of columns is passed as an array.

C# public int AddFetchSet(string name, List<string> columns)

VB Public Function AddFetchSet(name As String, columns As List(Of
String)) As Integer

 Same as AddFetchSet above but the list of columns is passed as a list.

C# public int AddFetchSets(Map sets)

VB Public Function AddFetchSets(sets as Map) As Integer

 Associates several sets of columns with logical names in the server. This is the
equivalent of calling AddFetchSet for each entry in the map but is more efficient.

Parameters

sets A Map containing a set of mappings between a name
and a set of columns.

Returns The number of sets (including these) registered in the server.

Throws IMuException if a server-side error occurred.

Reference

 Page 83

C# public int AddSearchAlias(string name, string columns)

VB Public Function AddSearchAlias(name As String, columns As String)
As Integer

 Associates a set of columns with a logical name in the server. The name can be
used when specifying search terms to be passed to FindTerms. The search
becomes the equivalent of an OR search involving the columns.

Parameters

name The logical name to associate with the set of
columns.

columns A string containing the names of the columns to be
used when name is passed to FindTerms. The
column names must be separated by a semi-colon or
a comma.

Returns The number of aliases (including this one) registered in the server.

Throws IMuException if a server-side error occurred.

C# public int AddSearchAlias(string name, string[] columns)

VB Public Function AddSearchAlias(name As String, columns() As
String) As Integer

 Same as AddSearchAlias above but the list of columns is passed as an array.

C# public int AddSearchAlias(string name, List<String> columns)

VB Public Function AddSearchAlias(name As String, columns As List(Of
String)) As Integer

 Same as AddSearchAlias above but the list of columns is passed as a list.

C# public int AddSearchAliases(Map aliases)

VB Public Function AddSearchAliases(aliases as Map) As Integer

 Associates several sets of columns with logical names in the server. This is the
equivalent of calling AddSearchAlias for each entry in the map but is more
efficient.

Parameters

aliases A map containing a set of mappings between a
name and a set of columns.

Returns The number of sets (including these) registered in the server.

Throws IMuException if a server-side error occurred.

Reference

Page 84

C# public int AddSortSet(string name, string keys)

VB Public Function AddSortSet(name As String, keys As String) As
Integer

 Associates a set of sort keys with a logical name in the server. The name can be
used instead of a sort key list when sorting the current result set using Sort.

Parameters

name The logical name to associate with the set of
columns.

keys A string containing the names of the keys to be used
when name is passed to Sort. The keys must be
separated by a semi-colon or a comma.

Returns The number of sets (including this one) registered in the server.

Throws IMuException if a server-side error occurred.

C# public int AddSortSet(string name, string[] keys)

VB Public Function AddSortSet(name As String, keys() As String) As
Integer

 Same as AddSortSet above but the list of keys is passed as an array.

C# public int AddSortSet(string name, List<string> keys)

VB Public Function AddSortSet (name As String, keys As List(Of
String)) As Integer

 Same as AddSortSet above but the list of keys is passed as a list.

C# public int AddSortSets(Map sets)

VB Public Function AddSortSets (sets as Map) As Integer

 Associates several sets of sort keys with logical names in the server. This is the
equivalent of calling AddSortSet for each entry in the map but is more efficient.

Parameters

sets A map containing a set of mappings between a
name and a set of keys.

Returns The number of sets (including these) registered in the server.

Throws IMuException if a server-side error occurred.

Reference

 Page 85

C# public ModuleFetchResult Fetch(string flag, int offset, int count,
string columns)

VB Public Function Fetch(flag As String, offset As Integer, count As
Integer, columns As String) As ModuleFetchResult

 Fetches count records from the position described by a combination of flag and
offset.

Parameters

flag The position to start fetching records from. Must be
one of:
"start"
"current"
"end

offset The position relative to flag to start fetching from.

count The number of records to fetch. A count of zero is
permitted to change the location of the current record
without returning any results. A count of less than
zero causes all the remaining records in the result
set to be returned.

columns A string containing the names of the columns to be
returned for each record or the name of a column set
which has been registered previously using
AddFetchSet. The column names must be
separated by a semi-colon or a comma.

Returns A ModuleFetchResult object.

Throws IMuException if a server-side error occurred.

C# public ModuleFetchResult Fetch(string flag, int offset, int count,
string[] columns)

VB Public Function Fetch(flag As String, offset As Integer, count As
Integer, columns() As String) As ModuleFetchResult

 Same as Fetch above but the list of columns is passed as an array.

C# public ModuleFetchResult Fetch(string flag, int offset, int count,
List<string> columns)

VB Public Function Fetch(flag As String, offset As Integer, count As
Integer, columns As List(Of String)) As ModuleFetchResult

 Same as Fetch above but the list of columns is passed as an array list.

Reference

Page 86

C# public ModuleFetchResult fetch(String flag, int offset, int count)

VB Public Function Fetch(flag As String, offset As Integer, count As
Integer) As ModuleFetchResult

 Same as Fetch above but no columns are requested. The results returned will still
include the pseudo-column rownum for each fetched record.

C# public long FindKey(long key)

VB Public Function FindKey(key As Long) As Long

 Searches for a record with the key value key.

Parameters

key The key of the record being searched for.

Returns The number of records found. This will be either 1 if the record was
found or 0 if not found.

Throws IMuException if a server-side error occurred.

C# public long FindKeys(long[] keys)

VB Public Function FindKeys(keys() As Long) As Long

 Searches for records with key values in the array keys.

Parameters

keys The list of keys being searched for.

Returns The number of records found.

Throws IMuException if a server-side error occurred.

C# public long FindKeys(List<Long> keys)

VB Public Function FindKeys(keys As List(Of Long)) As Long

 Same as FindKeys above but the keys are passed in an array list.

C# public long FindTerms(Terms terms)

VB Public Function FindTerms(terms As Terms) As Long

 Searches for records which match the search terms specified in terms.

Parameters

terms The search terms.

Returns An estimate of the number of records found.

Throws IMuException if a server-side error occurred.

Reference

 Page 87

C# public long FindWhere(string where)

VB Public Function FindWhere(where As String) As Long

 Searches for records which match the TexQL where clause.

Parameters

where The TexQL where clause to use.

Returns An estimate of the number of records found.

Throws IMuException if a server-side error occurred.

C# public long RestoreFromFile(string file)

VB Public Function RestoreFromFile(file As String) As Long

 Restores a set of records from a file on the server machine which contains a list of
keys, one per line.

Parameters

file The file on the server machine containing the keys.

Returns The number of records found.

Throws IMuException if a server-side error occurred.

C# public long RestoreFromTemp(string file)

VB Public Function RestoreFromTemp(file As String) As Long

 Restores a set of records from a temporary file on the server machine which
contains a list of keys, one per line. Operates the same way as RestoreFromFile
except that the file parameter is relative to the server's temporary directory.

Parameters

file The file on the server machine containing the keys.

Returns The number of records found.

Throws IMuException if a server-side error occurred.

Reference

Page 88

C# public ModuleSortResult Sort(string keys, string flags)

VB Public Function Sort(keys As String, flags As String) As
ModuleSortResult

 Sorts the current result set by the sort keys in keys. Each sort key is a column
name optionally preceded by a "+" (for an ascending sort) or a "-" (for a
descending sort).

Parameters

keys A string containing the list of sort keys. The keys
must be separated by a semi-colon or a comma.

flags A string containing a set of flags specifying the
behavior of the sort. The flags must be separated by
a semi-colon or a comma.

Returns A ModuleSortResult object. If the report flag has not been
specified the result will be null.

Throws IMuException if a server-side error occurred.

C# public ModuleSortResult Sort(string keys, string[] flags)

VB Public Function Sort(keys As String, flags() As String) As
ModuleSortResult

 Same as Sort above but the flags are passed as an array.

C# public ModuleSortResult Sort(string keys, List<string> flags)

VB Public Function Sort(keys As String, flags As List(Of String)) As
ModuleSortResult

 Same as Sort above but the flags are passed as a list.

C# public ModuleSortResult Sort(string[] keys, string flags)

VB Public Function Sort(keys() As String, flags As String) As
ModuleSortResult

 Same as Sort above but the keys are passed as an array.

C# public ModuleSortResult Sort(string[] keys, string[] flags)

VB Public Function Sort(keys() As String, flags() As String) As
ModuleSortResult

 Same as Sort above but the keys and flags are passed as arrays.

Reference

 Page 89

C# public ModuleSortResult Sort(string[] keys, List<string> flags)

VB Public Function Sort(keys() As String, flags As List(Of String))
As ModuleSortResult

 Same as Sort above but the keys are passed as an array and the flags are
passed as a list.

C# public ModuleSortResult Sort(List<String> keys, String flags)

VB Public Function Sort(keys As List(Of String), flags As String) As
ModuleSortResult

 Same as Sort above but the keys are passed as a list.

C# public ModuleSortResult Sort(ArrayList<String> keys, String[]
flags)

VB Public Function Sort(keys As List(Of String), flags() As String)
As ModuleSortResult

 Same as Sort above but the keys are passed as a list and the flags are passed
as an array.

C# public ModuleSortResult sort(ArrayList<String> keys,
ArrayList<String> flags)

VB Public Function Sort(keys As List(Of String), flags As List(Of
String)) As ModuleSortResult

 Same as Sort above but the keys and flags are passed a lists.

Reference

Page 90

Class ModuleFetchResult
IMu.ModuleFetchResult

Provides results from a call to the Module Fetch method.

Properties

Name C# VB Access Description

Count int Integer Read-Only The number of records returned in the
result.

Hits long Long Read-Only The best estimate of the size of the result
set after the Fetch method has completed.
When the Module object generates a result
set using FindTerms or FindWhere, the
number of matches is occasionally an
overestimate of the true number of matches.
After the Fetch method has been called,
the IMu server may have a better estimate
of the true number of matches so it is
included in the result.

Rows Map[] Map() Read-Only The array of the records actually fetched.
Each record is represented by a Map object,
with the map keys being the names of the
columns requested in the Fetch call.

Reference

 Page 91

Class ModuleSortResult
IMu.ModuleSortResult

Provides results from a call to the Module Sort method. This is a recursive structure holding the
information for one sort key. Information for secondary, tertiary and subsequent sort keys is
stored in nested ModuleSortResult objects.

Properties

Name C# VB Access Description

Count int Integer Read-Only The number of distinct terms
returned in the result.

Terms ModuleSortTerm[
]

ModuleSortTerm() Read-Only The array of the distinct
terms for a sort key. Each
term is represented by a
ModuleSortTerm object.

Reference

Page 92

Class ModuleSortTerm
IMu.ModuleSortTerm

Holds the information for a single distinct term in the results of a sort.

Properties

Name C# VB Access Description

Count long Long Read-Only The number of occurrences of this term in
the result set. For secondary or subsequent
sort keys this is the number of occurrences
for a given outer term.

Nested ModuleSo
rtResult

ModuleSo
rtResult

Read-Only Information regarding nested terms within
this term. This will be null if there are no
nested terms.

Value string String Read-Only The value of the distinct term itself.

Reference

 Page 93

Class Session
IMu.Session

Manages a connection to an IMu server. The server’s host name and port can be specified in the
constructor by setting properties on the object or by setting class-based default properties.

Class Properties

Name C# VB Access Description

DefaultHost string String Read/Write The name of the host used to create a
connection if no object-specific host has
been supplied.

DefaultPort int Integer Read/Write The number of the port used to create a
connection if no object-specific host has
been supplied.

Constructors
C# Session(string host, int port)

VB Sub New(host As String, port As Integer)

 Creates a Session object with the specified host and port.

Session() Creates a Session object with the default host and port.

Reference

Page 94

Properties

Name C# VB Access Description

Close bool Boolean Read/Writ
e

A flag controlling whether the connection to
the server should be closed after the next
request. This flag is passed to the server as
part of the next request to allow it to clean
up.

Context string String Read/Writ
e

The unique identifier assigned by the server
to the current session.

Host string String Read/Writ
e

The name of the host used to create the
connection. Setting this property after the
connection has been established has no
effect.

Port int Integer Read/Writ
e

The number of the port used to create the
connection. Setting this property after the
connection has been established has no
effect.

Suspend bool Boolean Read/Writ
e

A flag controlling whether the server
process handling this session should begin
listening on a distinct, process-specific port
to ensure a new session connects to the
same server process. This is part of IMu's
mechanism for maintaining state. If this flag
is set to true, then after the next request is
made to the server, the Session's Port
property will be altered to the process-
specific port number.

Reference

 Page 95

Methods
C# public void Connect()

VB Public Sub Connect()

 Opens a connection to an IMu server.

Throws IMuException if the connection could not be opened.

C# public void Disconnect()

VB Public Sub Disconnect()

 Closes the connection to the IMu server.

C# public void Login(string user, string password, bool spawn)

VB Public Sub Login(user As String, password As String, spawn As
Boolean)

 Logs in as the given user with the given password. If the spawn parameter is set to
true, this will cause the server to create a new child process specifically to handle
the newly logged in user's requests.

Parameters

user The name of the user to login as.

password The user's password for authentication.

spawn A flag indicating whether the process should create a
new child process specifically for handling the newly
logged in user's requests.

Throws IMuException if the login request failed.

Exception (or another subclass) if a low-level socket
communication error occurred.

C# public void Login(string user, string password)

VB Public Sub Login(user As String, password As String)

 Same as Login above except that the spawn parameter defaults to true.

Reference

Page 96

C# public Map Request(Map request)

VB Public Function Request(request As Map) As Map

 Submits a low-level request to the IMu server.

Parameters

request A Map object containing the request parameters.

Returns A Map object containing the server's response.

Throw IMuException if a server-side error occurred.

Reference

 Page 97

Class Terms
IMu.Terms

This class is used to create a set of search terms that is passed to the IMu server. A Terms
object can be passed to the FindTerms method of either a Module or Modules object.

Constructors
C# public Terms(TermsKind kind)

VB Public Sub New(kind as TermsKind)

 Creates a new Terms object with the given kind. The kind can be either
TermsKind.AND (for a set of AND terms) or TermsKind.OR (for a set of OR terms).

C# public Terms()

VB Public Sub New()

 Creates a new AND Terms object. This is the equivalent of:
 Terms(TermsKind.AND)

Properties

Name C# VB Access Description

List Object[] Object() Read-Only The list of search terms themselves. Each
element in the list can be either:

• A two or three element array
comprising:
• a column name
• text to search for
• an optional operator

• A nested Terms object
Kind TermsKind TermsKind Read-Only The kind of terms list as specified when the

object was constructed. Will be either:
• TermsKind.AND

-OR-
• TermsKind.OR

Reference

Page 98

Methods
C# public void Add(string name, string value, string operator)

VB Public Sub Add(name As String, value As String, operator As
String)

 Adds a new term to the list.

Parameters

name The name of a column or a search alias.

value The value to match.

operator An operator to apply (such as "contains", "=", "<"
etc.) for the server to apply when searching.

C# public void add(String name, String value)

VB Public Sub Add(name As String, value As String)

 Same as Add above except no operator is specified. This is the preferred method
for adding terms in many cases as it allows the server to choose the most suitable
operator.

C# public Terms AddAnd()

VB Public Function AddAnd() As Terms

 Adds an initially empty nested set of AND terms to the list. This is a shortcut for:
 AddTerms(TermsKind.AND)

Returns The newly added Terms object.

C# public Terms AddOr()

VB Public Function AddOr() As Terms

 Adds an initially empty nested set of OR terms to the list. This is a shortcut for:
 AddTerms(TermsKind.OR)

Returns The newly added Terms object.

C# public Terms AddTerms(TermsKind kind)

VB Public Function AddTerms(kind As TermsKind) As Terms

 Adds an initially empty nested set of terms to the list.

Returns The newly added Terms object.

Reference

 Page 99

Enum TermsKind
IMu.TermsKind

An enumeration used to define the relationship between a set of terms in a Terms object.

Members

 AND The relationship between the terms is AND.

 OR The relationship between the terms is OR.

Index
A

A Simple Example • 42

Accessing an EMu Module • 11

Attachments • 32
C

Class constants • 77

Class Handler • 74

Class IMu • 77

Class IMuException • 78

Class Map • 79

Class Module • 82

Class ModuleFetchResult • 90

Class ModuleSortResult • 91

Class ModuleSortTerm • 92

Class Properties • 93

Class Session • 93

Class Terms • 97

Column Sets • 40

columns • 26

Connecting to an IMu server • 7, 11

Constructors • 74, 78, 82, 93, 97

count • 25
D

Documenting data types • 1
E

Enum TermsKind • 99

Example • 52, 54, 67

Examples • 16

Exceptions • 5, 71
F

FindKey • 13

FindKeys • 14

FindTerms • 15

FindWhere • 21

flag and offset • 24

flags • 50
G

Getting Information from Matching Records
• 23

Grouping a set of nested table columns • 36
H

Handlers • 8, 9
I

Introduction • 1
K

keys • 49
M

Maintaining State • 41, 67

Members • 99

Methods • 76, 78, 79, 83, 95, 98

Multimedia • 57
N

Number of matches • 22
P

Properties • 74, 78, 82, 90, 91, 92, 94, 97
R

Reference • 23, 27, 73

Rename a Column • 35

Return Value • 53

Return Values • 27

Reverse Attachments • 33
S

Searching a Module • 12

Sorting • 48

T

Test Program • 4
U

Using IMu’s .Net library • 3

	Documenting data types
	Test Program
	C#
	VB

	Exceptions
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB

	Handlers
	C#
	VB

	Searching a Module
	FindKey
	C#
	VB

	FindKeys
	C#
	VB
	C#
	VB

	FindTerms
	C#
	VB
	Examples
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB

	FindWhere
	C#
	VB

	Number of matches

	Getting Information from Matching Records
	flag and offset
	count
	columns
	C#
	VB
	C#
	VB
	C#
	VB

	Return Values
	C#
	VB
	C#
	VB
	Attachments
	C#
	VB

	Reverse Attachments
	C#
	VB
	C#
	VB

	Rename a Column
	Grouping a set of nested table columns
	C#
	VB
	C#
	VB

	Column Sets
	C#
	VB
	C#
	VB
	C#
	VB

	A Simple Example
	C#
	VB

	Sorting
	keys
	C#
	VB
	C#
	VB
	C#
	VB

	flags
	Return Value
	Example
	C#
	VB
	C#
	VB

	Multimedia
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB
	C#
	VB

	Class Handler
	Constructors
	Properties
	Methods

	Class IMu
	Class constants

	Class IMuException
	Constructors
	Properties
	Methods

	Class Map
	Methods

	Class Module
	Constructors
	Properties
	Methods

	Class ModuleFetchResult
	Properties

	Class ModuleSortResult
	Properties

	Class ModuleSortTerm
	Properties

	Class Session
	Class Properties
	Constructors
	Properties
	Methods

	Class Terms
	Constructors
	Properties
	Methods

	Enum TermsKind
	Members

	Index

