

www.kesoftware.com
© 2010 KE Software. All rights reserved.

EMu Documentation

Using KE IMu API (With PHP)
Document Version 1.1

EMu Version 4.0

Contents

S E C T I O N 1 Introduction 1
System Requirements 1

S E C T I O N 2 Using the IMu PHP library 3
Exceptions 4

S E C T I O N 3 Connecting to an IMu server 5
Pass the hostname and service or port number to the IMuSession
constructor 5
Set the public members $host and $port 5
Use the IMuSession class default values 6
Handlers 7

S E C T I O N 4 Accessing an EMu Module 9
Searching a Module 10

findKey 10
findKeys 11
findTerms 11
findWhere 12
Examples 13

Getting Information from Matching Records 15
flag and offset 15
count 16
columns 16
Return Value 17

Attachments 19
Reverse Attachments 20
Rename a Column 21
Grouping a set of nested table columns 22
Column Sets 24

A Simple Example 25
Sorting 27

columns 27
flags 28
Example 30

S E C T I O N 5 Maintaining State 33
Example 36

S E C T I O N 6 Generating XML 41

S E C T I O N 7 Searching Several Modules 45
Example 50
getHits method 53

S E C T I O N 8 Exceptions 55

Index 57

Introduction

S E C T I O N 1

Introduction
IMu, or Internet Museum, broadly describes KE Software's strategy and toolset for
distributing data held within EMu via the Internet. Distribution includes the
publishing of content on the web, but goes far beyond this to cover sharing of data
via the Internet (Portals, online partnerships, etc.); publishing content to new
mobile technologies; iPod guided tours, etc.

To facilitate these various Internet projects, KE has produced a set of documents
that describe how to implement and customise IMu components, including:

• APIs (for Web Developers)
• Web pages for publishing EMu
• Tools, including:

• iPhone / Mobile interfaces
• iPod guided tours

This document provides details of how to create web applications using IMu with
PHP.

System Requirements
The IMu PHP library requires PHP version 5.0 or later. Version 5.2 (or later) is
recommended as it has many features built-in which must otherwise be added to
earlier versions.

The PHP configuration must include the sockets and dom modules.

If you plan to do server-side document processing using XSLT, the PHP
configuration must also include the xsl module. If you plan to use AJAX in your
website, it is also recommended to include the json module.

 Page 1

Using the IMu PHP library

S E C T I O N 2

Using the IMu PHP library
In order to use the IMu PHP library, include imu.php in the PHP code.

For example, if the IMu library is installed in the relative directory:
../imu

the following line would be added to the PHP code:
require_once '../imu/php/lib/imu.php';

imu.php defines an IMu class. This class includes static members which contain
information about the IMu installation. The class includes the following members:

• IMu::$lib - the path to the IMu PHP library files.
• IMu::$lang - the two letter language code defining the language in which

error messages are returned.

The $lib member should also be used to simplify other IMu library files.

For example:
require_once IMu::$lib . '/session.php';

 Page 3

Using the IMu PHP library

Page 4

Exceptions
Many of the methods in IMu library objects throw exceptions when an error
occurs. For this reason, all code that uses any IMu library objects should be
surrounded with a try/catch block.

The following code is a basic template for writing PHP which uses the IMu
library:
<?php
…
require_once '…/imu.php';
…
try
{
 /* Create and use IMu objects */
 …
}
catch (Exception $error)
{
 /* Handle or report error */
 …
}

The exception thrown is an IMuException object. IMuException is a subclass of
the standard PHP Exception. In many cases your code can simply catch the
standard Exception (as in this template). If more information is required about the
exact IMuException thrown, see Exceptions (page 55).

 The examples that follow assume that code fragments have been surrounded
with code structured in this way.

Connecting to an IMu server

S E C T I O N 3

Connecting to an IMu server
An IMuSession object is used to connect your code to an IMu server.

 To use an IMuSession object, it is necessary to include IMu's
session.php.

Several techniques can be used to achieve this:

Pass the hostname and service or port
number to the IMuSession constructor

The simplest way to create a connection to an IMu server is to pass the hostname
and service or port number to the IMuSession constructor and then call the
connect method.

For example:
…
require_once IMu::$lib . '/session.php';
…
$session = new IMuSession('server.com', 12345);
$session->connect();
…

Set the public members $host and $port
Alternatively, pass no values to the constructor and then set the public members
$host and $port before calling connect:
…
require_once IMu::$lib . '/session.php';
…
$session = new IMuSession;
$session->host = 'server.com';
$session->port = 12345;
$session->connect();
…

 Page 5

Connecting to an IMu server

Page 6

Use the IMuSession class default values
If neither the host nor port is set, the IMuSession class default values will be
used. These defaults can be overridden by setting the class variables
$defaultHost and $defaultPort:
…
require_once IMu::$lib . '/session.php';
…
IMuSession::$defaultHost = 'server.com';
IMuSession::$defaultPort = 12345;
$session = new IMuSession;
$session->connect();
…

This technique is useful when planning to create several connections to the same
server or when wanting to get a handler object (page 7) to create the connection
automatically.

Connecting to an IMu server

Handlers
Once a connection to an IMu server has been established, it is possible to create
handler objects to submit requests to the server and receive responses.

 When a handler object is created, a corresponding object is created by the
IMu server to service the handler's requests.

All handlers are subclasses of the IMuHandler class.

 You do not typically create an IMuHandler object directly but instead use a
subclass.

In this document we examine two of the most frequently used handlers,
IMuModule and IMuModules:

• IMuModule allows you to find and retrieve records from a single EMu
module.

• IMuModules allows you to find and retrieve records from two or more EMu
modules.

 Page 7

Accessing an EMu Module

S E C T I O N 4

Accessing an EMu Module
An IMuModule object must be created in the PHP code in order to access an EMu
module. The simplest way to do this is to pass the name of the module to the
IMuModule constructor.

For example:
…
require_once IMu::$lib . '/module.php';
…
$module = new IMuModule('eparties', $session);

This code assumes that an IMuSession object called $session has already been
created. If an IMuSession object is not passed to the IMuModule constructor, a
session will be created automatically using the $defaultHost and $defaultPort
class variables. See Connecting to an IMu Server (page 5) for details.

Once an IMuModule object has been created, it can be used to search the module
and retrieve records.

 Page 9

Accessing an EMu Module

Page 10

Searching a Module
One of the following methods can be used to search for records within a module:

• findKey
• findKeys
• findTerms
• findWhere

findKey

The findKey method searches for a single record by its key.

For example, the following code searches for a record with a key of 42 in the
Parties module:
…
require_once IMu::$lib . '/module.php';
…
$module = new IMuModule('eparties', $session);
$hits = $module->findKey(42);

The return value is 1 if the record exists and 0 otherwise.

Accessing an EMu Module

findKeys

The findKeys method searches for a set of key values. The keys are passed in a
simple PHP array:
$module = new IMuModule('eparties', $session);
$keys = array(52, 42, 17);
$hits = $module->findKeys($keys);

findTerms

The findTerms method is the most flexible and powerful way to search for
records within a module. It can be used to run simple single term queries or
complex multi-term searches.

Each term is specified as a three element array:

1. The first element contains the name of the column or an alias in the module to
be searched.

2. The second element contains the value to be searched for.
3. The third element contains a comparison operator to use for the search.

The operator specifies how the value supplied in the second element of the
array should be matched. Operators are the same as those used in texql (see
KE's texql documentation for details).
Specifying an operator is optional. If none is supplied, the operator defaults to
matches. This is not a real texql operator, but is translated by the search
engine as the most "natural" operator for the type of column being searched.
For example, with text columns matches is translated as "contains" and with
integer columns it is translated as "=".

 Unless it is really necessary to specify an operator, consider using the
matches operator, or better still supplying no operator at all as this allows
the server to determine the best type of search.

 The first element of each term may be the name of a search alias. A search
alias associates a name with one or more actual columns. Aliases are created
using the addSearchAlias or addSearchAliases methods.

 Page 11

Accessing an EMu Module

Page 12

findWhere

With the findWhere method it is possible to submit a complete texql where
clause.
…
$module = new IMuModule('eparties', $session);
$where = "NamLast contains 'Smith'";
$hits = $module->findWhere($where);
…

Although this method provides complete control over exactly how a search is run,
it is generally better to use findTerms to submit a search rather than building a
where clause. There are (at least) two reasons to prefer findTerms over
findWhere:

1. Building the where clause requires the code to have detailed knowledge of the
data type and structure of each column. The findTerms method leaves this
task to the server.
For example, specifying the term to search for a particular value in a nested
table is straightforward. To find Parties records where the Roles nested table
contains Artist, findTerms simply requires:
array('NamRoles_tab', 'Artist')
On the other hand, the equivalent texql clause is:
exists(NamRoles_tab where NamRoles contains 'Artist')
The texql for double nested tables is even more complex.

2. More importantly, findTerms is more secure.
With findTerms a set of terms is submitted to the server which then builds
the texql where clause. This makes it much easier for the server to check for
terms which may contain SQL-injection style attacks and to avoid them.
If your code builds a where clause from user entered data so it can be run
using findWhere, it is much more difficult, if not impossible, for the server to
check and avoid SQL-injection. The responsibility for checking for SQL-
injection becomes yours.

 All the find methods return the number of matches found by the search. For
findKey and findKeys this number is always the exact number of matches
found. The number returned by findTerms and findWhere is best thought
of as an estimate. This estimate is almost always correct but because of the
nature of the indexing used by the server's data engine (Texpress) the
number can sometimes be an over-estimate of the real number of matches.
This is similar to the estimated number of hits returned by a Google search.

Accessing an EMu Module

 Page 13

Examples

To search for the name Smith in the Last Name field of the Parties module, the
following term can be used:
array('NamLast', 'Smith')

Specifying search terms for other types of columns is straightforward. For
example, to search for records inserted on February 13, 2010:
array('AdmDateInserted', 'Feb 13 2010')

To search for records inserted before February 13, 2010, it is necessary to add an
operator:
array('AdmDateInserted', 'Feb 13 2010', '<')

To specify more than one search term, create a Boolean AND or OR term. To do
this, create a two element array:

1. The first element of the array is the word and or or.
2. The second element of the array is an array of other search terms.

For example, to specify a search for Parties records where the first name is John
and the last name is Smith:
array('and', array(
 array('NamFirst', 'John'),
 array('NamLast', 'Smith')
))

The and or or terms can be nested. To restrict the previous search to find records
inserted before February 13, 2010 or on March 1, 2010, specify:
array('and', array(
 array('NamFirst', 'John'),
 array('NamLast', 'Smith'),
 array('or', array(
 array('AdmDateInserted', 'Feb 13 2010', '<'),
 array('AdmDateInserted', 'Mar 1 2010')
))
))

To run a search, pass the terms array to the findTerms method:
…
$module = new IMuModule('eparties', $session);
$term = array('NamLast', 'Smith');
$hits = $module->findTerms($term);
…

As with other find methods, the return value contains the estimated number of
matches.

To use a search alias, call the addSearchAlias method to associate the alias with
one or more real column names before calling findTerms. Suppose we want to
allow a user to search the Catalogue module for keywords. Our definition of a
keywords search is to search the SummaryData, CatSubjects_tab and NotNotes
columns. We could do this by simply building an or search:

Accessing an EMu Module

Page 14

$terms = array('or',
array('SummaryData', $keyword),
array('CatSubjects_tab', $keyword),
array('NotNotes', $keyword));

Another way of doing this is to register the association between the name
keywords and the three columns we are interested in and then pass the name
keywords as the column to be searched:
$module->addSearchAlias('keywords',
array('SummaryData', 'CatSubjects_tab', 'NotNotes'));
…
$module->findTerms('keywords', $keyword);

The advantage of using a search alias is that once the alias is registered a simple
name can be used to specify a more complex or search. This is useful if the search
terms are coming from an HTML form. Suppose we had an HTML form with a
keywords text box amongst other search boxes. All we need to do is register the
keywords alias and then pass the form data directly to the findTerms method:
$module->addSearchAlias('keywords',
array('SummaryData', 'CatSubjects_tab', 'NotNotes'));
…
$terms = array();
foreach ($_GET as $name => $value)
 $terms[] = array($name, $value);
$module->findTerms(array('and', $terms));

To add more than one alias at a time, build an associative array of names and
columns and call the addSearchAliases method:
$alias = array(
'keywords' => array('SummaryData', 'CatSubjects_tab', 'NotNotes'),
'title' => array('SummaryData', 'TitMainTitle'));
$module->addSearchAliases($aliases);

Accessing an EMu Module

 Page 15

Getting Information from Matching
Records

IMuModule's fetch method is used to get information from the matching records
once a search of a module has been run. The server maintains the set of matching
records in a list and fetch can be used to retrieve any information from any
contiguous block of records in the list.

The fetch method takes four arguments:

• flag
• offset
• count
• columns

flag and offset

The flag and offset arguments define the starting position of the block records
to be fetched. The flag argument is a string and must be one of:

• start
• current
• end

The start and end flags refer to the first record and the last record in the
matching set. The current flag refers to the position of the last record fetched by
the previous call to fetch. If fetch has not been called, current refers to the first
record in the matching set.

The offset argument is an integer. It adjusts the starting position relative to the
flag. A positive value for offset specifies a start after the position specified by
flag and a negative value specifies a start before the position specified by flag.

For example, calling fetch with a flag of start and offset of 3 will cause
fetch to return records starting from the fourth record in the matching set.
Specifying a flag of end and an offset of -8 will cause fetch to return records
starting from the ninth last record in the matching set. To retrieve the next record
after the last returned by the previous fetch, you would pass a flag of current
and an offset of 1.

Accessing an EMu Module

Page 16

count

The count argument specifies the maximum number of records to be retrieved.

Passing a count value of 0 is valid. This causes fetch to change the current
record without actually retrieving any data.

Using a negative value of count is also valid. This causes fetch to return all the
records in the matching set from the starting position (specified by flag and
offset).

columns

The columns argument is used to specify which columns should be included in the
returned records. The argument can be either a simple string or an array of strings.
In its simplest form each string contains a single column name, or several column
names separated by commas.

For example, to retrieve the information for both the NamFirst and NamLast
columns, you would pass either:
"NamFirst,NamLast"

or
array("NamFirst", "NamLast")

as the columns argument to fetch. Building the list into a PHP array is
convenient if requesting a large number of columns.

Accessing an EMu Module

 Page 17

Return Value

The fetch method returns records requested in an IMuModuleFetchResult object.
This object contains two members:

• hits
• rows

The hits member is the estimated number of matches in the result set. This
number is returned for each fetch because the estimate can decrease as records in
the result set are processed by the fetch method.

The rows member is an array containing the set of records requested. Each
element of the rows array is itself an associative array. Each associative array
contains members for each column requested. This is probably best demonstrated
by PHP's built-in print_r function. The following example shows a simple search
of the EMu Parties module using findTerms with fetch used to retrieve a set of
records:
…
require_once '…/lib/imu.php';
require_once IMu::$lib . '/session.php';
require_once IMu::$lib . '/module.php';
…
try
{
 $session = new IMuSession('server.com', 12345);

 $module = new IMuModule('eparties', $session);

 /* Find all party records where Last Name contains 'smith'
 */
 $hits = $module->findTerms(array('NamLast', 'Smith'));

 /* We want to fetch the irn, NamFirst and NamLast
 ** columns for each record.
 */
 $columns = array();
 $columns[] = 'irn';
 $columns[] = 'NamFirst';
 $columns[] = 'NamLast';

 /* Fetch the first three records (at most) from the start
 ** of the result set.
 */
 $result = $module->fetch('start', 0, 3, $columns);
 print_r($result);
}
catch (Exception $error)
{
 …
}

The output of this code will be similar to:

Accessing an EMu Module

Page 18

IMuModuleFetchResult Object
(
 [hits] => 13
 [rows] => Array
 (
 [0] => Array
 (
 [irn] => 104440
 [NamLast] => SMITH
 [rownum] => 1
 [NamFirst] => Noel
)
 [1] => Array
 (
 [irn] => 106612
 [NamLast] => Smith
 [rownum] => 2
 [NamFirst] => Alwyn
)
 [2] => Array
 (
 [irn] => 106985
 [NamLast] => Smith
 [rownum] => 3
 [NamFirst] => Graham
)
)
)

Notice that data for each row includes the irn, NamFirst and NamLast elements,
which correspond to the columns requested. Also notice that a rownum element is
included. This element contains the number of the record within the result set
(starting from 1) and is always included in the retrieved records.

Nested tables are returned as arrays. For example, if a columns argument of:
"NamLast,NamFirst,NamRoles_tab"

is passed, the object returned will have a structure similar to:
IMuModuleFetchResult Object
(
 [hits] => 1
 [rows] => Array
 (
 [0] => Array
 (
 [NamLast] => Ebb
 [rownum] => 1
 [NamRoles_tab] => Array
 (
 [0] => Lyricist
 [1] => Pianist
)
 [NamFirst] => Fred
)
)
)

(Displayed using print_r)

Accessing an EMu Module

 Page 19

Attachments

The set of columns requested can be more than simple column names. Columns
from modules which the current record attaches to can also be requested. For
example, suppose that the Catalogue module documents the creator of an object as
an attachment (to a record in the Parties module) in a column called
CatCreatorRef. If the Catalogue module is searched, it is possible to get the
creator's last name for each Catalogue record in the result set as follows:
"CatCreatorRef.NamLast"

This technique can be extended to get information for more than one column:
"CatCreatorRef.(NamTitle,NamLast,NamFirst)"

The values are returned in a nested associative array:
IMuModuleFetchResult Object
(
 [hits] => 1
 [rows] => Array
 (
 [0] => Array
 (
 [irn] => 5
 [CatCreatorRef] => Array
 (
 [NamLast] => Mueck
 [NamTitle] => Mr
 [NamFirst] => Ron
)
 [rownum] => 1
)
)
)

Users of the older EMuWeb system should note that it is possible to use an
"arrow" (i.e. a hyphen followed by a greater-than sign) in place of the dot, e.g.:
"CatCreatorRef->NamLast"

Also note that it is not necessary to include the table name in the reference. For
example:
"CatCreatorRef->eparties->NamLast"

is not necessary. The IMu server will accept this syntax and silently ignore the
table name.

Accessing an EMu Module

Page 20

Reverse Attachments

In addition to standard attachment columns, it is possible to request information
from so-called reverse attachments. A reverse attachment refers to one or more
records which attach to the current record. For example, to retrieve information
from the set of Catalogue records which attach to the current Parties record via the
Catalogue's CatCreatorRef column, specify:
"<ecatalogue:CatCreatorRef>.(irn,TitMainTitle)"

The following code fragment retrieves Parties IRN 53 and displays the
CatCreatorRef reverse attachments:
…
$module = new IMuModule('eparties', $session);
$hits = $module->findKey(53);

$columns = array();
$columns[] = 'irn';
$columns[] = 'NamFirst';
$columns[] = 'NamLast';
$columns[] = '<ecatalogue:CatCreatorRef>.(irn,TitMainTitle)';

$result = $module->fetch('start', 0, 1, $columns);
print_r($result);

The output from this fragment illustrates the structure of the
IMuModuleFetchResult object returned:
IMuModuleFetchResult Object
(
 [hits] => 1
 [rows] => Array
 (
 [0] => Array
 (
 [ecatalogue:CatCreatorRef] => Array
 (
 [0] => Array
 (
 [irn] => 5
 [TitMainTitle] => In Bed
)
 [1] => Array
 (
 [irn] => 50
 [TitMainTitle] => Man in Blankets
)
)
 [irn] => 53
 [NamLast] => Mueck
 [rownum] => 1
 [NamFirst] => Ron
)
)
)

Accessing an EMu Module

 Page 21

Rename a Column

It is possible to rename any column when it is returned by adding the new name in
front of the real column being requested, followed by an equals sign.

For example, to request data from the NamLast column but rename it as
last_name, specify:
"last_name=NamLast"

The returned associative array will contain an element called last_name rather
than NamLast.

Accessing an EMu Module

Page 22

Grouping a set of nested table columns

A set of nested table columns can be grouped. Grouping allows the association
between the columns to be reflected in the structure of the data returned. Consider
the Contributors grid on the Details tab of the Narratives module, which
contains two columns:

• NarContributorRef_tab
which contains a set of attachments to records in the Parties module.

• NarContributorRole_tab
which contains the roles for the corresponding contributors.

Each column can be retrieved separately as follows:
…
$module = new IMuModule('enarratives', $session);

$hits = $module->findKey(2);

$columns = array();
$columns[] = 'irn';
$columns[] = 'NarTitle';
$columns[] = 'NarContributorRef_tab.SummaryData';
$columns[] = 'NarContributorRole_tab';

$result = $module->fetch('start', 0, 1, $columns);
print_r($result);

This produces the output:
IMuModuleFetchResult Object
(
 [hits] => 1
 [rows] => Array
 (
 [0] => Array
 (
 [NarTitle] => Portrait of William Wilberforce
 [irn] => 2
 [rownum] => 1
 [NarContributorRole_tab] => Array
 (
 [0] => Artist
 [1] => Author
)
 [NarContributorRef_tab] => Array
 (
 [0] => Array
 (
 [SummaryData] => Rising, John
)
 [1] => Array
 (
 [SummaryData] => Graham, Beverley
)
)
)
)
)

Accessing an EMu Module

 Page 23

Although this works fine, the relationship between the contributor and his or her
role is unclear. Grouping can make the relationship far clearer.

To group the columns, surround them with square brackets:
"[NarContributorRef_tab.SummaryData,NarContributorRole_tab]"

With this single change the output of the previous code fragment looks like this:
IMuModuleFetchResult Object
(
 [hits] => 1
 [rows] => Array
 (
 [0] => Array
 (
 [NarTitle] => Portrait of William Wilberforce
 [irn] => 2
 [rownum] => 1
 [group1] => Array
 (
 [0] => Array
 (
 [NarContributorRole_tab] => Artist
 [NarContributorRef_tab] => Array
 (
 [SummaryData] => Rising, John
)
)
 [1] => Array
 (
 [NarContributorRole_tab] => Author
 [NarContributorRef_tab] => Array
 (
 [SummaryData] => Graham, Beverley
)
)
)
)
)
)

By default, the group is given a name of group1, group2 and so on, which can be
changed easily enough:
"contributors=[NarContributorRef_tab.SummaryData,
 NarContributorRole_tab]"

Accessing an EMu Module

Page 24

Column Sets

Every time fetch is called and a set of columns to retrieve is passed, the IMu
server must parse these columns and check them against the EMu schema. For
complex column sets, particularly those involving several references or reverse
references, this can take time.

If fetch will be called several times with the same set of columns, it is a good
idea to register the set of columns once and then simply pass the name of the
registered set each time fetch is called.

KEModule’s addFetchSet method is used to register a set of columns. This
method takes two arguments:

• The name of the column set
• The set of columns to be associated with that name.

For example:
$columns = array();
$columns[] = 'irn';
$columns[] = 'NamFirst';
$columns[] = 'NamLast';
$module->addFetchSet('PersonDetails', $columns);

This registers the set of columns with the IMu server and gives it the name
PersonDetails. This name can then be passed to any call to fetch and the same
set of columns will be returned:
$module->fetch('start', 0, 5, 'PersonDetails');

More than one set can be registered at once using addFetchSets. Simply build an
associative array containing each set:
$sets = array(
 'PersonDetails' => array('irn', 'NamFirst', 'NamLast'),
 'OrganisationDetails' => array('irn', 'NamOrganisation'));
$module->addFetchSets($sets);

This technique is very useful when maintaining state (page 33).

Accessing an EMu Module

 Page 25

A Simple Example
In this example we build a simple PHP-based web page to search the Parties
module by last name and display the full set of results.

First build the search page, search.html, which is a plain HTML form:
<head>
 <title>Party Search</title>
</head>
<body>
 <form action="results.php">
 <p>Enter a last name to search for:</p>
 <input type="text" name="name"/>
 <input type="submit" value="Search"/>
 </form>
</body>

Next build the results page, results.php, which runs the search and displays the
results:
<?php
require_once '…/imu.php';

require_once IMu::$lib . '/session.php';
require_once IMu::$lib . '/module.php';

try
{
 $session = new IMuSession('localhost', 45678);
 $module = new IMuModule('eparties', $session);

 /* Build search term and run search.
 ** Search term is passed from search.html using GET
 */
 $text = $_GET['name'];
 $term = array('NamLast', $text);
 $hits = $module->findTerms($term);

 /* Build list of columns to fetch */
 $columns = array
 (
 'NamFirst',
 'NamLast'
);

 /* Fetch all the matches in one go by passing count < 0 */
 $results = $module->fetch('start', 0, -1, $columns);

 /* Build the results page */
?>
<body>
<p>Number of matches: <?php echo $results->hits ?></p>
<table>
<?php
 /* Display each match in a separate row in a table */
 foreach ($results->rows as $row)

Accessing an EMu Module

Page 26

 {
?>
 <tr>
 <td><?php echo $row['rownum'] ?></td>
 <td><?php echo $row['NamFirst'], ' ', $row['NamLast'] ?></td>
 </tr>
<?php
 }
?>
</table>
</body>
<?php
}
catch(Exception $err)
{
 print("Sorry, an error occurred: $err\n");
}
?>

The page generated looks like this:
Number of matches: 13
1 Noel SMITH
2 Alwyn Smith
3 Graham Smith
4 Peter Smith
5 Kate ECCLES-SMITH
6 Louise WARNE-SMITH
7 Jill SMITH
8 Joanna MURRAY-SMITH
9 Clare Smith
10 B. Smith
11 Ian SMITH
12 Kate Eccles-Smith
13 Grace Cossington SMITH

Accessing an EMu Module

Sorting
The matching set of results can be sorted using IMuModule's sort method. This
method takes two arguments:

• columns
• flags

columns
The columns argument is used to specify the columns to sort the result set by. The
argument can be either a simple string or an array of strings. Each string can be a
simple column name or a set of column names, separated by commas. Each
column name can be preceded by a + or – sign. A leading + indicates that the
records should be sorted in ascending order. A leading – indicates that the records
should be sorted in descending order.

For example, to sort a set of Parties records first by Party Type (ascending), then
Last Name (descending) and then First Name (ascending):
"+NamPartyType,-NamLast,+NamFirst"

-OR-
array("+NamPartyType", "-NamLast", "+NamFirst")

 If a sort order (+ or -) is not given, the sort order defaults to ascending.

 Page 27

Accessing an EMu Module

Page 28

flags

The flags argument is used to pass one or more flags to control the way the sort
is carried out. As with the columns argument, the flags argument can be a
simple string or an array of strings. Each string can be a single flag or a set of flags
separated by commas.

The following flags control the type of comparisons used when sorting:

• word-based
sort disregards all punctuation and white spaces (more than the one space
between words). For example:
Traveler's Inn
will be sorted as
Travelers Inn

• full-text
sort includes all punctuation and white spaces. For example:
Traveler's Inn
will be sorted as
Traveler's Inn
and will therefore differ from:
Traveler's Inn

• compress-spaces
sort includes punctuation but disregards all white space (with the exception
of a single space between words). For example:
Traveler's Inn
will be sorted as
Traveler's Inn

If none of these flags is included, the comparison defaults to word-based.

The following flags modify the sorting behaviour:

• case-sensitive
sort is sensitive to upper and lower case. For example:
Melbourne gallery
will be sorted separately to
Melbourne Gallery

• order-insensitive
Values in a multi-value field will be sorted alphabetically regardless of the
order in which they display. For example, a record which has the following
values in the NamRoles_tab column in this order:
Collection Manager
Curator
Internet Administrator
and another record which has the values in this order:
Internet Administrator
Collection Manager
Curator
will be sorted the same.

Accessing an EMu Module

 Page 29

• null-low
Records with empty records will be placed at the start of the result set rather
than at the end.

• extended-sort
Values that include diacritics will be sorted separately to those that do not.
For example, entrée will be sorted separately to entree.

The following flags can be used when generating a summary of the sorted records:

• report
A summary of the sort is generated. The summary is returned as an array by
the sort method. The array is hierarchically structured, summarising the
number of records which match each of the sort keys. See the example
below for an illustration of the array structure.

• table-as-text
All data from multi-valued columns will be treated as a single value (joined
by line break characters) in the summary results array.
For example, for a record which has the following values in the
NamRoles_tab column:
Collection Manager, Curator, Internet Administrator
the summary will include statistics for a single value:
Collection Manager
Curator
Internet Administrator
Thus the number of values in the summary results display will match the
number of records.
If this option is not included, each value in a multi-valued column will be
treated as a distinct value in the summary. Thus there may be many more
values in the summary results than there are records.

Accessing an EMu Module

Page 30

Example
In this example we sort a set of Parties records first by Party Type, then Last
Name (descending) and then by First Name:
$module = new IMuModule;
$module->findTerms(…);
…
$columns = array[];
$columns[] = '+NamPartyType';
$columns[] = '-NamLast';
$columns[] = '+NamFirst';
$flags = array();
$flags[] = 'full-text';
$flags[] = 'case-sensitive';
$flags[] = 'report';
$summary = $module->sort($columns, $flags);
print_r($summary);

This will produce output similar to the following:

Accessing an EMu Module

 Page 31

Array
(
 …
[3] => Array
(
 [count] => 2086
 [value] => Person
 [list] => Array
 (
 …
 [11] => Array
 (
 [count] => 4
 [value] => Young
 [list] => Array
 (
 [0] => Array
 (
 [count] => 1
 [value] => Derek
)
 [1] => Array
 (
 [count] => 1
 [value] => Don
)
 [2] => Array
 (
 [count] => 1
 [value] => George
)
 [3] => Array
 (
 [count] => 1
 [value] => Shirley
)
)
)
 …
)
 …
)

From this example we can see that the summary array contains an element for
each distinct value in the first sort column (in this case NamPartyType). Each
element is itself an associative array. The associative array includes a value
element which contains the distinct value (in this case the value is Person) and a
count element containing the number of the records in the result set which
contain this value. The associative array also includes a list element. This
element contains a summary array of the distinct values for the second sort column
(in this case NamLast).

Maintaining State

S E C T I O N 5

Maintaining State
One of the biggest drawbacks of the earlier example (page 25) is that it fetches the
full set of results at one time, which is impractical for large result sets. It is more
realistic to display a page of results and allow the user to move forward or
backward through the pages.

As any web programmer will be aware however, this simple change of design
introduces a significantly higher level of complexity to the implementation,
primarily because web pages are stateless. The stateless nature of each page leads
to many complexities. One of the most common is that each time a new page of
results is displayed, the initial search for the records must be re-executed. This is
inconvenient for the web programmer and potentially slow for the user.

The IMu server provides a solution to this. When a handler object is created, a
corresponding object is created on the server to service the handler's request: this
server-side object is allocated a unique identifier by the IMu server. When making
a request for more information, the unique identifier can be used to connect a new
handler to the same server-side object, with its state intact.

The following example illustrates the connection of a second, independently
created IMuModule object to the same server-side object:
/* Create a module object as usual */
$first = new IMuModule('eparties', $session);

/* Run a search - this will create a server-side object */
$first->findKeys(array(1, 2, 3, 4, 5, 42));

/* Get a set of results */
$result1 = $first->fetch('start', 0, 2, 'SummaryData');

/* Create a second module object */
$second = new IMuModule('eparties', $session);

/* Attach it to the same server-side object as the
** first module. This is the key step.
*/
$second->id = $first->id;

/* Get a second set of results from the same search */
$result2 = $second->fetch('current', 1, 2, 'SummaryData');

Although two completely separate IMuModule objects have been created, they are
each connected to the same server-side object by virtue of having the same id
property. This means that the second fetch call will access the same result set as
the first fetch. Notice that a flag of current has been passed to the second call.
The current state is maintained on the server-side object, so in this case the
second call to fetch will return the third and fourth records in the result set.

 Page 33

Maintaining State

Page 34

While this example illustrates the use of the id property, it is not particularly
realistic as it is unlikely that two distinct objects which refer to the same server-
side object would be required in the same PHP page. The need to re-connect to the
same server-side object when generating another page of results is far more likely.
This situation involves creating a server-side IMuModule object (to search the
module and deliver the first set of results) in one PHP page and then re-connecting
to the same server-side object (to fetch a second set of results) in a different PHP
page. As before, this is achieved by assigning the same identifier to the id
property of the object in the second page, but two other things need to be
considered.

By default the IMu server destroys all server-side objects when a session finishes.
This means that unless the server is explicitly instructed not to do so, the server
side object may be destroyed when the connection from the first page is closed.
Telling the server to maintain the server-side object only requires that the destroy
property on the object is set to false before calling any of its methods. In the
example above, the server would be instructed not to destroy the object as follows:
$module = new IMuModule('eparties', $session);
$module->destroy = false;
$module->findKeys(array(1, 2, 3, 4, 5, 42));

The second point is quite subtle. When a connection is established to a server, it is
necessary to specify the port to connect to. Depending on how the server has been
configured, there may be more than one server process listening for connections
on this port. Your program has no control over which of these processes will
actually accept the connection and handle requests. Normally this makes no
difference, but when trying to maintain state by re-connecting to a pre-existing
server-side object, it is a problem.

For example, suppose there are three separate server processes listening for
connections. When the first PHP page is executed it connects, effectively at
random, to the first process. This process responds to a request, creates a server-
side object, searches the Parties module for the terms provided and returns the first
set of results. The server is told not to destroy the object and passes the server-side
identifier to the page which fetches the next set of results from the same search.

The problem comes when the next page connects to the server again. When the
connection is established any one of the three server processes may accept the
connection. However, only the first process is maintaining the relevant server-side
object. If the second or third process accepts the connection, the object will not be
found.

The solution to this problem is relatively straightforward. Before the first page
closes the connection to its server, it must notify the server that subsequent pages
need to connect explicitly to that process. This is achieved by setting the
IMuSession object's suspend property to true prior to submitting any request to
the server:

Maintaining State

 Page 35

$session = new IMuSession('server.com', 12345);
$module = new IMuModule('eparties', $session);
…
$session->suspend = true;
$module->findKeys(…);

The server handles a request to suspend a connection by starting to listen for
connections on a second port. Unlike the primary port, this port is guaranteed to be
used only by that particular server process. This means that a subsequent page can
reconnect to a server on this second port and be guaranteed of connecting to the
same server process. This in turn means that any saved server-side object will be
accessible via its identifier. After the request has returned (in this example it was a
call to findKeys), the IMuSession object's port property holds the port number
to reconnect to:
$session->connection = 'suspend';
$module->findKeys(…);
$reconnect = $session->port;

Maintaining State

Page 36

Example
This may seem a little complicated but it is not in fact too difficult to manage in
practice.

To illustrate we'll modify the very simple results page of the previous section to
display the list of matching names in blocks of five records per page. We'll
provide simple Next and Prev links to allow the user to move through the results,
and we will use some more GET parameters to pass the port we want to reconnect
to, the identifier of the server-side object and the rownum of the first record to be
displayed.

The code to be modified is in results.php and is all inside the try block (so we
don't show the other code outside the try block).

First, we create the IMuSession object. We set the port property to a standard
value unless a port parameter has been passed in the URL:
/* Create new session object.
*/
$session = new IMuSession;
$session->host = 'server.com';

/* Work out what port to connect to
*/
$port = 12345;
if (array_key_exists('port', $_GET))
 $port = $_GET['port'];
$session->port = $port;

Next we connect to the server. We immediately set the suspend property to true
to tell the server that we may want to connect again (this ensures the server listens
on a new, unique port):
/* Establish connection and tell the server
** we may want to re-connect
*/
$session->connect();
$session->suspend = true;

We then create the client-side IMuModule object and set its destroy property to
false, ensuring the server will not destroy it:
/* Create module object and tell the server
** not to destroy it.
*/
$module = new IMuModule('eparties', $session);
$module->destroy = false;

If the URL included a name parameter, we need to do a new search. Alternatively,
if it included an id parameter, we need to connect to an existing server-side
object:

Maintaining State

 Page 37

/* If name is supplied, do new search. The
** search term is passed from search.html using GET
*/
if (array_key_exists('name', $_GET))
 $module->findTerms(array('NamLast', $_GET['name']));

/* Otherwise, if id is supplied reattach to
** existing server-side object
*/
else if (array_key_exists('id', $_GET))
 $module->id = $_GET['id'];

/* Otherwise, we can't process */
else
 throw new Exception('no name or id');

As before, we build a list of columns to fetch:
/* Build list of columns to fetch */
$columns = array
(
 'NamFirst',
 'NamLast'
);

If the URL included a rownum parameter, fetch records starting from there.
Otherwise start from record number 1:
/* Work out which block of records to fetch */
$rownum = 1;
if (array_key_exists('rownum', $_GET))
 $rownum = $_GET['rownum'];

Build the main page as before.
/* Fetch next five records */
$results = $module->fetch('start', $rownum - 1, 5, $columns);

/* Build the results page */
?>
<body>
<p>Number of matches: <?php echo $results->hits ?></p>
<table>
<?php
/* Display each match in a separate row in a table */
foreach ($results->rows as $row)
{
?>
 <tr>
 <td><?php echo $row['rownum'] ?></td>
 <td><?php echo $row['NamFirst'], ' ', $row['NamLast'] ?></td>
 </tr>
<?php
}
?>
</table>

Maintaining State

Page 38

Finally we add the Prev and Next links to allow the user to page backwards and
forwards through the results. This is the most complicated part! First, we want to
ensure that we connect to the same server and server-side object, so we add the
appropriate port and id parameters to our URL:
<?php
/* Add the Prev and Next links */
$url = $_SERVER['PHP_SELF'];
$url .= '?port=' . $session->port;
$url .= '&id=' . $module->id;

If we are not already showing the first record, we add a Prev link to allow the user
to go back one page in the result set:
$first = $results->rows[0];
if ($first['rownum'] > 1)
{
 $prev = $first['rownum'] - 5;
 if ($prev < 1)
 $prev = 1;
 $prev = $url . '&rownum=' . $prev;
?>
<a href="<?php echo $prev ?>">Prev
<?php
}

Similarly, if we are not already showing the last record, we add a Next link to
allow the user to go forward one page:
$last = $results->rows[count($results->rows) - 1];
if ($last['rownum'] < $results->hits)
{
 $next = $last['rownum'] + 1;
 $next = $url . '&rownum=' . $next;
?>
<a href="<?php echo $next ?>">Next
<?php
}
?>
</body>

Maintaining State

The resulting web page looks like this:

 Page 39

Generating XML

S E C T I O N 6

Generating XML
The examples in the previous sections have concentrated on generating HTML
directly from the PHP code. However, it may be desirable to use IMu's PHP
library to generate XML instead. This may be as part of a web service or to
generate web pages using XSLT.

Once information has been retrieved from the IMu server it is of course possible to
generate the XML in many ways. The IMu PHP library includes an IMuDocument
class which may make this a little easier. The IMuDocument class is a subclass of
the standard PHP DOMDocument class (see
http://php.net/manual/en/class.domdocument.php for details about DOMDocument).
The IMuDocument class offers some advantages over direct use of DOMDocument.

To use IMuDocument, you must include the document.php file:
require_once IMu::$lib . '/document.php';
…
$doc = new IMuDocument;

You can set the document encoding by passing the encoding to the constructor:
$doc = new IMuDocument('iso-8859-1');

The contents of a PHP variable can be added to the XML document using
IMuDocument's writeElement method. The variable may be a simple value
(string, integer, Boolean, etc.), an object or an array.

For example:
class Person
{
 public $first;
 public $last;
}
$person = new Person;
$person->first = 'Johann';
$person->last = 'Bach';

$doc = new IMuDocument;
$doc->writeElement('person', $person);

will generate XML structured as follows:
<person>
 <first>Johann</first>
 <last>Bach</last>
</person>

Be aware that writeElement has a few quirks when handling arrays. PHP makes
no distinction between conventional arrays (with a simple integer index starting
from zero) and associative arrays (with a string index). However, when generating
XML you almost certainly want to distinguish between these two. When

 Page 41

Generating XML

Page 42

processing an array, writeElement checks the set of index values used in the
array. If the indexes are all numeric in a range starting from zero, writeElement
treats the array as a simple list. Otherwise it treats it as an associative array.

The following examples illustrate the difference.

An array used as an associative array:
$colours = array();
$colours['red'] = 'Rouge';
$colours['blue'] = 'Bleu';
$colours['green'] = 'Vert';
$doc->writeElement('colours', $colours);

will generate XML as follows:
<colours>
 <red>Rouge</red>
 <blue>Bleu</blue>
 <green>Vert</green>
</colours>

By contrast, an array used as a simple list:
$fruits = array();
$fruits[] = 'Apple';
$fruits[] = 'Banana';
$fruits[] = 'Mango';
$doc->writeElement('fruits', $fruits);

will generate XML as follows:
<fruits>
 <fruit>Apple</fruit>
 <fruit>Banana</fruit>
 <fruit>Mango</fruit>
</fruits>

The key difference is that the list is created with repeated sub-elements. The name
of the sub-elements is guessed from the name of the main element. In this case the
sub-element name is simply the main element name stripped of its trailing s. If the
name of the sub-element cannot be guessed, writeElement uses the name item.
This behaviour can be overridden by using the setTagOption method.

For example:
$list[] = 'alpha';
$list[] = 'beta';
$list[] = 'gamma';
$doc->setTagOption('greek', 'child', 'letter');
$doc->writeElement('greek', $list);

generates:
<greek>
 <letter>alpha</letter>
 <letter>beta</letter>
 <letter>gamma</letter>
</greek>

One of the advantages of writeElement is that it can be passed an
IMuModuleFetchResult object returned by IMuModule's fetch method.

Generating XML

 Page 43

For example:
…
$module = new IMuModule('eparties', $session);
$hits = $module->findKey(53);

$columns = array();
$columns[] = 'irn';
$columns[] = 'NamFirst';
$columns[] = 'NamLast';
$columns[] = '<ecatalogue:CatCreatorRef>.(irn,TitMainTitle)';

$result = $module->fetch('start', 0, 1, $columns);
$doc = new IMuDocument;
$doc->writeElement('result', $result);

generates:
 <result>
 <hits>1</hits>
 <rows>
 <row>
 <ecatalogue:CatCreatorRef>
 <item>
 <irn>5</irn>
 <TitMainTitle>In Bed</TitMainTitle>
 </item>
 <item>
 <irn>50</irn>
 <TitMainTitle>Man in Blankets</TitMainTitle>
 </item>
 </ecatalogue:CatCreatorRef>
 <irn>53</irn>
 <NamLast>Mueck</NamLast>
 <rownum>1</rownum>
 <NamFirst>Ron</NamFirst>
 </row>
 </rows>
</result>

Of course, the names of nodes can be changed by renaming the columns, as
described in Getting Information from Matching Records (page 15).

Searching Several Modules

S E C T I O N 7

Searching Several Modules
With IMuModule it is possible to search for and retrieve records from a single
EMu module.

It is also possible to have IMu search for information in more than one module and
treat the results as a single result set. For example, suppose we want to have a
simple search page where the user can enter one or more keywords and search the
Narratives, Catalogue and Parties modules, displaying the results as a single result
set. The IMu PHP library provides an IMuModules class for this purpose:
require_once IMu::$lib . '/modules.php';
…
$modules = new IMuModules($session);

Using IMuModules is quite similar to using IMuModule but it requires a little
more preparation. First it is necessary to tell IMuModules which modules it should
use when searching and retrieving information. This is done with the setModules
method.

For example, suppose we want to use the Narratives, Catalogue and Parties
modules:
$modules->setModules(array('enarratives', 'ecatalogue',
'eparties'));

The list of modules passed to setModules also determines the order in which the
modules will be searched and the order in which the results will be returned.

Like IMuModule, IMuModules provides methods to search for records:

• findKeys
• findTerms

findKeys

The findKeys method is similar to that in IMuModule. However, the list of keys
must include the name of the module as well as its key value:
$modules = new IMuModules($session);
…
$keys = array();
$keys[] = array('enarratives', 13);
$keys[] = array('ecatalogue', 42);
$modules->findKeys($keys);

 Page 45

Searching Several Modules

Page 46

findTerms

The findTerms method is similar to that in IMuModule:
$modules = new IMuModules($session);
…
$terms = array('SummaryData', 'loan');
$modules->findTerms($terms);

This works the same way as IMuModule's findTerms method. However, it is
important to realise that the column specified must exist in all the modules being
used. If this is not the case, findTerms will throw an exception.

For this reason it is often very useful to use search aliases. Suppose a user wants to
search for the keyword design. You decide that a keyword search means to search
the NarTitle and NarNarrative columns in the Narratives module, the
CreSubjectClassification_tab and SummaryData columns in the Catalogue module
and the BioCommencementNotes_tab and SummaryData columns in the Parties
module. This is set up using addSearchAlias, in a similar way to IMuModule.
However, the second argument passed to addSearchAlias is an associative array,
with the column names to be used for each module. This would be set up as
follows:
$modules = new IMuModules($session);
…
$aliases = array(
 'enarratives' => array('NarTitle', 'NarNarrative'),
 'ecatalogue' =>
array('CreSubjectClassification_tab','SummaryData'),
 'eparties' => array('BioCommencmentNotes_tab', 'SummaryData')
);
$modules->addSearchAlias('keywords', $aliases);
…
$terms = array('keywords', 'loan');
$modules->findTerms($terms);

Both findKeys and findTerms accept an optional second argument. This
argument is a list of modules to be searched. This allows you to restrict the search
to just the modules in the list. If no list is supplied, then all the modules given in
the call to setModules are searched. Be aware that the order of the modules
supplied in the list is unimportant. The modules will be searched and the results
will be returned in the order of the list given to setModules. For example:
$modules = new IMuModules($session);
$modules->setModules(array('enarratives', 'ecatalogue',
'eparties'));
…
$aliases = array(
 'enarratives' => array('NarTitle', 'NarNarrative'),
 'ecatalogue' =>
array('CreSubjectClassification_tab','SummaryData'),
 'eparties' => array('BioCommencmentNotes_tab', 'SummaryData')
);
$modules->addSearchAlias('keywords', $aliases);
…
$terms = array('keywords', 'loan');
$modules->findTerms($terms, array('eparties', 'enarratives'));

Searching Several Modules

 Page 47

In this example the Catalogue module will not be searched because it is not
included in the list passed to findTerms. However, the modules will be searched
in the order listed in the earlier call to setModules, meaning that matching records
from the Narratives module will be retrieved before records from the Parties
module. Unlike the corresponding methods in IMuModule, both findKeys and
findTerms return the list of modules being searched. For the previous example
the list would be returned as follows:
$list = $modules->findTerms($terms,
array('eparties','enarratives'));
print_r($list);

Array
(
[0] => enarratives
[1] => eparties
)

Notice that there is no findWhere method.

IMuModules provides a fetch method similar to the one in IMuModule. Setting
the columns to be returned by the fetch method is not difficult. The idea is to use
addFetchSet to associate a set of columns with a logical name. This logical name
can then be passed to the fetch method to retrieve these columns. This is similar
to creating a fetch set using IMuModule's addFetchSet. There is, however, one
important difference. In the case of IMuModule, creating a column set is optional
and provides a convenient way to refer to a set of columns. When using
IMuModules, creating fetch sets is the only way to specify which columns should
be retrieved for each module.

In this next example we create a column set called summary, and for each module
we specify which columns are to be returned:
$modules = new IMuModules($session);
$modules->setModules('enarratives', 'ecatalogue', 'eparties');
$columns = array
(
 'enarratives' => array('irn', 'NarTitle'),
'ecatalogue' => array('irn', 'SummaryData'),
'eparties' => array('irn', 'SummaryData'),
);
$modules->addFetchSet('summary', $columns);

The key point here is that we have mapped three different sets of columns to the
same logical name (in this case summary).

Once the fetch sets have been added, the fetch method can be used to get the
results. This works similarly to IMuModule's fetch.

For example:
$result = $cursor->fetch('start', 0, 5, 'summary');

returns the first five records from the result set. The columns returned will be
those that match the summary column set.

The records in the result set are grouped by module. In the example above, our call

Searching Several Modules

Page 48

to setModules added the Narratives module, followed by the Catalogue module,
followed by the Parties module. Conceptually this means that the result set
comprises all the matching Narratives records followed by all the matching
Catalogue records followed by the matching Parties records.

Suppose our design search matches three Narratives records, five Catalogue
records and four Parties records. This result set effectively looks like this:

Narrative 1

Narrative 2

Narrative 3

Catalogue 1

Catalogue 2

Catalogue 3

Catalogue 4

Catalogue 5

Party 1

Party 2

Party 3

Party 4

This means that when we request the first five records, the result will contain all
three matching Narrative records followed by two matching Catalogue records. If
we asked for the next page of five records using:
$result = $cursor->fetch('current', 1, 5, 'summary');

the result will contain the remaining three matching Catalogue records followed
by two matching Parties records.

The fetch returns an IMuModulesFetchResult object. This object contains two
members:

• The count member contains the total number of records returned.
• The modules member contains an array of IMuCursorFetchModule objects,

one for each module for which records have been retrieved by the fetch call.
Each IMuCursorFetchModule object contains the following members:
• name
• index
• hits
• rows

The name member contains the name of the module (such as eparties).

The index member contains the index of the module in the list of modules
registered with using setModules. In the example above the index for
enarratives would be 0, the index for ecatalogue would be 1 and the index

Searching Several Modules

 Page 49

for eparties would be 2.

The hits member contains the estimated number of matches for the module. This
is the same as the hits member in IMuModule's fetch result.

The rows member is an array containing the set of records returned for that
module. This is the same as the rows member in IMuModule's fetch result and is
explained in detail in Getting Information from Matching Records (page 15).

Searching Several Modules

Page 50

Example
To illustrate, here is an example print_r of a fetch result:
IMuModulesFetchResult Object
(
 [count] => 5
 [modules] => Array
 (
 [0] => IMuModulesFetchModule Object
 (
 [name] => enarratives
 [index] => 0
 [hits] => 3
 [rows] => Array
 (
 [0] => Array
 (
 [NarTitle] => James Joule's paddlewheel …
 [irn] => 1000217
 [rownum] => 1
)
 [1] => Array
 (
 [NarTitle] => Polyhedral sundial
 [irn] => 120002
 [rownum] => 2
)
 …
)
)
 [1] => IMuModulesFetchModule Object
 (
 [hits] => 5
 [index] => 1
 [name] => eCatalogue
 [rows] => Array
 (
 [0] => Array
 (
 [SummaryData] => The designer's handbook
 [irn] => 2242,
 [rownum] => 1
)
 …
)
)
)
)

Notice that the result only includes the modules for which the fetch retrieved
records.

The result set effectively consists of all the records of the first module, followed
by all the records of the second module and so on. To access the records for a
particular module, pass the name of the module as the flag argument to fetch.

Searching Several Modules

 Page 51

For example:
$cursor->fetch('ecatalogue', 0, 5, 'summary');

will fetch five records starting from the first ecatalogue record. The module
names are effectively bookmarks within the result set. Similarly, the module index
can be passed as the flag. Remember that the index is the order in which the
modules were listed in the call to setModules. This means that the following is
the equivalent of our previous example:
$cursor->fetch(1, 0, 5, 'summary');

The IMuModulesFetchResult returned by fetch contains three other members:
current, prev and next:

• The current member contains information about the current record (i.e. the
last one returned by the fetch).

• The prev member contains information about the record that comes
immediately before the first record returned by the fetch.

• The next member contains information about the record that comes
immediately after the last record returned.

Each of these members defines a position within the result set. The position is
represented by an IMuModulesFetchPosition object with two members:

• The flag member contains the module name.
• The offset member is the offset of the row within that module (starting

from 0).

For example, if we fetch a set of records with:
$firstPage = $cursor->fetch(1, 0, 5, 'summary');

we can then fetch the next page with:
$next = $firstPage->next;
$nextPage = $cursor->fetch($next->flag, $next->offset, 5,
'summary');

If there are no records before the first record returned (i.e. we have asked fetch
to return records from the start of the result set), the prev member is not set in the
IMuModulesFetchResult. Similarly if there are no records after the last record
returned (i.e. our request to fetch has included the last record in the result set),
the next member is not set. This can be used to decide whether to enable Prev or
Next links on a page.

It is useful to understand how IMuModules manages the searching of each module.
When the modules are registered with the server, the server does not search all of
the registered modules immediately. Instead, when fetch is called, the server runs
just the searches that it needs to satisfy the fetch requirements. In our previous
example the fetch call asked for the first five records. To satisfy this request, the
server searches the first module (Narratives) and finds three matches. This is not
enough to satisfy the request so the server then searches the next module
(Catalogue). It adds the first two records found to the results and returns them. If
we then ask for the next five records, the server starts returning records from the

Searching Several Modules

Page 52

third Catalogue record (it does not re-search the Catalogue). There are only three
remaining Catalogue record so the server then searches the Parties module and
returns the first two matches. The key point here is that the modules are searched
only as required. This keeps the server's use of resources to a minimum.

Searching Several Modules

 Page 53

getHits method
IMuModules provides a getHits method which is useful for identifying how
many matches there may be for each module. When the name of the module is
passed to this method, the estimated number of matches is returned. If a module
name is not passed to getHits, the total number of estimated matches (across all
modules) is returned:
$partyHits = $cursor->getHits('eparties');
$totalHits = $cursor->getHits();

If you pass the name of a module that was not listed in the call to setModules,
getHits throws an exception. If you pass the name of a module that has been
excluded from the current search (by not including it in the list passed as the
second argument to findKeys or findTerms as described above), getHits will
return a value of -1.

Exceptions

S E C T I O N 8

Exceptions
When an error occurs, the IMu PHP library throws an exception. The exception is
an IMuException object. This is a subclass of PHP's standard Exception class.

For simple error handling all that is usually required is to catch the exception as an
Exception object and report the exception as a string:
try
{
 …
}
catch (Exception $e)
{
 echo "Error: $e";
 exit(1);
}

IMuException overrides the Exception's __toString method (which is called
"magically" when the exception object is used as a string) and returns an error
message. The message returned is in the language defined in IMu::$lang.

 Ideally IMuException would override Exception's getMessage method to
return the error message. Unfortunately, getMessage is declared final in
Exception, preventing it from being overridden.

To handle specific IMu errors it is necessary to catch the exception as an
IMuException object. IMuException includes a public member called id. This
is a string and contains the internal IMu error code for the exception. For example,
you may want to catch the exception raised when an IMuSession's connect
method fails and try to connect to an alternative server:

 Page 55

Exceptions

Page 56

$mainServer = 'server1.com';
$alternativeServer = 'server2.com';
$session = new IMuSession;
$session->host = $mainServer;
try
{
 $session->connect();
}
catch (IMuException $e)
{
 /* Check for specific SessionConnect error
 */
 if ($e->id != 'SessionConnect')
 {
 echo "Error: $e";
 exit(1);
 }
 $session->host = $alternativeServer;
 try
 {
 $session->connect();
 }
 catch (Exception $e)
 {
 echo "Error: $e";
 exit(1);
 }
}
/* By the time we get to here the session is connected
** to either the main server or the alternative.
*/

IMuException includes a getString method. This method takes a $lang
parameter and returns an error message in the requested language. If a $lang
value is not passed, the message returned is in the language defined in
IMu::$lang.

The error messages are defined in the file strings.xml which is in the shared
directory of the IMu installation.

Index
A

A Simple Example • 25, 33

Accessing an EMu Module • 9

Attachments • 19

C
Column Sets • 24

columns • 16, 27

Connecting to an IMu server • 5, 9

count • 16

E
Example • 30, 36, 50

Examples • 13

Exceptions • 4, 55

F
findKey • 10

findKeys • 11

findTerms • 11

findWhere • 12

flag and offset • 15

flags • 27

G
Generating XML • 41

getHits method • 53

Getting Information from Matching Records •
15, 43, 49

Grouping a set of nested table columns • 22

H
Handlers • 6, 7

I
imu.php • 3

iMuResult • 17

IMuSession object • 5

Introduction • 1

M
Maintaining State • 24, 33

P
Pass the hostname and service or port number

to the IMuSession constructor • 5

R
Rename a Column • 21

Return Value • 17

Reverse Attachments • 20

S
Searching a Module • 10

Searching Several Modules • 45

Set the public members $host and $port • 5

Sorting • 27

System Requirements • 1

U
Use the IMuSession class default values • 6

Using the IMu PHP library • 3

	System Requirements
	Exceptions
	Pass the hostname and service or port number to the IMuSession constructor
	Set the public members $host and $port
	Use the IMuSession class default values
	Handlers
	Searching a Module
	findKey
	findKeys
	findTerms
	findWhere
	Examples

	Getting Information from Matching Records
	flag and offset
	count
	columns
	Return Value
	Attachments
	Reverse Attachments
	Rename a Column
	Grouping a set of nested table columns
	Column Sets

	A Simple Example
	Sorting
	columns
	flags
	Example

	Example
	findKeys
	findTerms

	Example
	getHits method
	Index

