
 
 

 

www.kesoftware.com 
©  2010 KE Software. All rights reserved. 

 

EMu Documentation 

Understanding the  
KE IMu Server 

Document Version 1.0 

EMu Version 4.0 

 





 

Contents 

 

S E C T I O N  1  Introduction 3 

S E C T I O N  2  How a Handler Works 5 
Using the Handler class 6 
Communication with the Server 8 
Handler Names and Packages 9 
Handler Processing 10 
Server Response 13 
Server Errors 14 
Re-using a Handler 15 
Reconnecting to a Server 17 

S E C T I O N  3  Creating a New Handler 19 
Basic Structure 20 
Adding a Method 21 
Trying It Out 22 
Server Tracing 23 
Returning a Result 25 
Handling Errors 26 
Creating a Client Handler 27 
The Handler Environment 30 
Accessing EMu Tables 31 
Module Cursors 32 
Using the EMu Registry 34 
Temporary Files 35 

Index 37 
  





Understanding the KE IMu Server 
 
 

S E C T I O N  1  

Introduction 
This document assumes that readers understand object-oriented Perl and have read the 
relevant Using KE IMu API document (PHP, C#, etc.) 

 

 Page 3 
 





Understanding the KE IMu Server 
 
 

S E C T I O N  2  

How a Handler Works 
Code developed using the IMu client libraries connects to an IMu server and then 
creates handler objects which submit requests to the server and receive responses. The 
distinguishing feature of a handler is that a corresponding object is created in the IMu 
server for each one of them in order to service its requests. 

The basic functionality of a handler is contained in IMu's Handler class. Commonly 
used handlers, such as Module and Cursor, are implemented as subclasses of Handler 
and consequently provide higher-level methods which hide some of the operation of 
the handler. 

 

 Page 5 
 



How a Handler Works 
 

 

 

Page 6  
 

Using the Handler class 
It is possible to create an instance of a Handler directly and to use it to communicate 
with a corresponding server-side object. 

The general principle of using a handler in this way is straightforward: 

1. Create a handler and, optionally, tie it to an existing session.  
If a handler is not tied to a session, the IMu client library will create a new session, 
using the default. 

2. Next, specify the name of the server-side object to be created when the handler 
communicates with the server. 

3. Finally, call the handler's call method, passing it the name of a method in the 
server-side object to be invoked and a set of parameters to be passed to the 
method. 

By way of example, the standard IMu server installation includes a set of handlers 
used for testing. One of these is Test::Convert. This includes a toLower method 
which takes a single string and converts it to its lower case equivalent. The following 
code illustrates how to create a Test::Convert handler and call its toLower method: 

PHP 
/* Include the handler code */ 
require IMu::$lib . '/handler.php'; 
… 
/* Connect to a server */ 
$session = new IMuSession('server.com', 12345); 
$session->connect(); 
 
/* Create a new handler object */ 
$handler = new IMuHandler($session); 
 
/* Name the server-side object to be created */ 
$handler->name = 'Test::Convert'; 
 
/* Call the toLower method */ 
$result = $handler->call('toLower', 'miXedCaSE'); 



How a Handler Works 
 

 

 

 Page 7 
 

C# 
using System; 
… 
/* Connect to a server */ 
IMu.Session session = new IMu.Session("server.com", 12345); 
session.Connect(); 
 
/* Create new handler object */ 
IMu.Handler handler = new IMu.Handler(session); 
 
/* Name the server-side object to be created */ 
handler.Name = "Test::Convert"; 
 
/* Call the toLower method */ 
Object result = handler.Call("toLower", "miXedCaSE"); 

 



How a Handler Works 
 

 

 

Page 8 

Communication with the Server 
What happens when this code is executed?  

Once the connection to the server has been established (see Using KE IMu API for 
details), the Handler object is created and the name of the server-side class to be 
created is set in the name property. This is straightforward client-side code; there is 
no communication with the server up until this point. 

It gets more interesting when the Handler object's call method is invoked. First, the 
call method puts its two arguments into an associative array. In our example this 
creates an associative array which contains the following name / value pairs: 
"method" => "toLower" 
"params" => "miXedCaSE" 

This array is then passed to Handler's request method, which adds further elements 
to the associative array. In this case the name of the server-side class to be created is 
added: 
"method" => "toLower" 
"params" => "miXedCaSE" 
"name" => "Test::Convert" 

This array is then passed to the Session object's request method. This method may 
add further entries to the associative array but its main role is to submit the request (in 
the form of the associative array) to the server and receive a response. 

Sending the request to the Session object serialises it. The request is serialised using 
JavaScript Object Notation (JSON). 

 JSON is a lightweight but flexible data-interchange format. More information is 
available at http://www.json.org. 
The format used has one addition to standard JSON, allowing binary objects to 
be transmitted as raw bytes rather than encoding them as JSON strings. This can 
save a significant amount of processing when transmitting large binary objects 
such as images and videos. 

The associative array passed to the server is serialised as a JSON object: 
{ 
 "method" : "toLower", 
 "params" : "miXedCaSE", 
 "name" : "Test::Convert" 
} 

Once the request has been serialised, the Session object passes it to the server. 
 

 
 



How a Handler Works 
 

 

 

Handler Names and Packages 
The server receives the JSON request, unserialises it into a Perl hash and processes it. 
The first step in the processing is to check the request for a name element. If present, 
the server interprets this as a request to create a new server-side handler, which is a 
Perl package. To generate the name of the required Perl package the server adds the 
text KE::Server::Handler before the value in the name element.  

For example, in our previous code, we requested a handler named Test::Convert. 
The package name generated by the server is therefore 
KE::Server::Handler::Test::Convert. 

 The server adds the KE::Server::Handler prefix to the handler name for 
security reasons: to prevent the client code from requesting to load any arbitrary 
Perl package. 

The server then tries to load the package, first from the back-end environment's 
local/etc/imuserver directory. If the package is not found there, the server will try 
to load the package from the environment's etc/imuserver directory. Loading 
packages in this way provides a way for local handlers to override standard ones. 

 The server uses Perl's standard use mechanism to locate and load the packages. 
At start-up the server adds the two directories (local/etc/imuserver and 
etc/imuserver) to the front of the @INC array. This ensures that these two 
directories are checked first when loading a package.  
However, if the package is not found in either of these directories Perl will use 
the rest of the @INC array to try to locate the package. The @INC array will 
contain the set of directories specified in the back-end environment's PERL5LIB 
environment variable and the standard set of Perl system directories.  
More information regarding Perl's use mechanism is available at 
http://perldoc.perl.org/functions/use.html. 

In our example, the server has been requested to load the 
KE::Server::Handler::Test::Convert package. To achieve this the server will 
first try to load the file: 
local/etc/imuserver/KE/Server/Handler/Test/Convert.pm 

If that file cannot be loaded, the server will then try to load: 
etc/imuserver/KE/Server/Handler/Test/Convert.pm 

If the package cannot be loaded, the server will return an error response. See Server 
Errors (page 14) for more information about errors. 

 

 Page 9 
 



How a Handler Works 
 

 

 

Page 10 

Handler Processing 
When the package has been loaded the server creates a new package object and uses 
this object to service the request: the server calls the requested method and passes it 
any parameters that were passed as part of the request. 

To better understand how the server-side handler operates we will look at the code for 
Test::Convert. 
use strict; 
use warnings; 
 
package KE::Server::Handler::Test::Convert; 
 
use base 'KE::Server::Handler'; 
… 
sub method_toLower 
{ 
 my $this = shift; 
 my $value = shift; 
 return lc($value); 
} 
… 
1; 

The handler includes Perl's standard strict and warnings directives. All handlers 
should begin in this way. 

As explained earlier (page 9), all handlers are Perl packages. The name of the package 
must begin with KE::Server::Handler. The package in this example is declared to 
be KE::Server::Handler::Test::Convert. 

All handlers must be subclasses of the KE::Server::Handler package. The Perl 
base directive is used to specify the handler's immediate base class. This directive 
saves us having to use the base class' package and setup Perl's magic @ISA array. In 
this case our handler is an immediate subclass of KE::Server::Handler. 

Each method that can be called from the client is implemented as Perl sub. The sub 
name must start with method_. The rest of the sub's name is the name of the method 
as it is called from the client. In our example, the method that is called as toLower in 
the client is implemented as a sub method_toLower. 

 The server forces methods which can be called from client-side code to start 
with method_. This ensures that the client cannot call an arbitrary sub in the 
package. 

By convention, methods are named using so-called "camel case". Method names 
being with a lower case letter but any subsequent words start with an upper case 
letter: hence the name toLower. 

 
 



How a Handler Works 
 

 

 

 Page 11 
 

The arguments passed to the method are straightforward. As with all Perl object-
oriented code, the first argument passed is a reference to the Perl "object" itself 
(technically a blessed scalar reference). The second argument is the value passed in 
the params element from the client. In the example above it is a simple string. 

The second argument to the call method (and hence the second argument passed to 
the server-side method) can be an associative array. This is useful when passing 
several pieces of information.  

For example, the Test::Convert handler has another method, called convert, which 
accepts an action flag and a value string. The action flag can be the word lower or 
the word upper and the value string is converted appropriately. These parameters are 
passed to the server using an associative array: 

PHP 
$handler = new IMuHandler($session); 
$handler->name = 'Test::Convert'; 
$paramaters = array(); 
$parameters['action'] = 'lower'; 
$parameters['value'] = 'miXedCaSE'; 
$result = $handler->call('convert', $parameters); 

C# 
IMu.Handler handler = new IMu.Handler(session); 
handler.Name = "Test::Convert"; 
Hashtable parameters = new Hashtable(); 
parameters.Add("action", "lower"); 
parameters.Add("value", "miXedCaSE"); 
Object result = handler.Call("convert", parameters); 



How a Handler Works 
 

 

 

Page 12  
 

The server method uses the elements of the array as appropriate: 
sub method_convert 
{ 
 my $this = shift; 
 my $params = shift; 
 my $action = $params->{action}; 
 my $value = $params->{value}; 
 if (! defined($action)) 
 { 
  return $value; 
 } 
 if (! defined($value)) 
 { 
  return $value; 
 } 
 if ($action eq 'lower') 
 { 
  return lc($value); 
 } 
 elsif ($action eq 'upper') 
 { 
  return uc($value); 
 } 
 return $value; 
} 

This effectively passes a set of named arguments to a server-side method. 
 



How a Handler Works 
 

 

 

Server Response 
Once the method has been called, the server returns a response to the client. The 
response is sent as a JSON object. The object includes a status element. This 
element contains the value ok if the request was processed correctly, or the value 
error if an error occurred during the processing. 

If the status of the request is ok, the response object will also contain a result 
element. This contains the value actually returned by the server-side method. For 
example, the server's response to the toLower request will look like this: 
{ 
 "status" : "ok", 
 "result" : "mixedcase" 
} 

The client-side Session object receives this response and processes it. First it checks 
the status element. If the status value is ok, the response is returned to the Handler 
object's request method. This method checks for further elements in the response 
before returning the response to the call method, which finally returns the value in 
the result element. See Re-using a Handler (page 15) for details. 

For example, the following code will print out the text mixedcase: 

PHP 
$result = $handler->call('toLower', 'miXedCaSE'); 
print("$result\n"); 

C# 
Object result = handler.Call("toLower", "miXedCaSE"); 
System.Console.WriteLine(result); 

 The result need not be a simple value. It may be an associative array or a list as 
well. 
 

 Page 13 
 



How a Handler Works 
 

 

 

Page 14  
 

Server Errors 
If an error occurs while the server is processing a request, it will return a status 
value of error. If this happens, the client's Session request method will not return 
but will instead throw an exception. The type of exception will be an IMu Exception 
class. The Exception will contain the server-side error identifier in its id member. 
The error message (in the appropriate language) will be returned by the Exception's 
getString method. For example: 

PHP 
try 
{ 
 … 
 $result = $handler->call('toLower', 'miXedCaSE'); 
 print("$result\n"); 
 … 
} 
catch (IMuException $error) 
{ 
 print("An error occurred: " . $error->getString()); 
} 

C# 
try 
{ 
 … 
 Object result = handler.Call("toLower", "miXedCaSE"); 
 System.Console.WriteLine(result); 
 … 
} 
catch (IMu.Exception error) 
{ 
 System.Console.WriteLine("An error occurred: " + 
  error.GetString()); 
} 

 



How a Handler Works 
 

 

 

 Page 15 
 

Re-using a Handler 
By default, the server will destroy a handler when one of its methods has been called. 
Client code can override this behaviour by setting the Handler's destroy member to 
false (see Using KE IMu API for details). When the client subsequently calls a 
server-side method, the destroy value is passed as part of the request.  

For example: 

PHP 
$handler = new IMuHandler(); 
$handler->name = 'Test::Convert'; 
$handler->destroy = false; 
$handler->call('toLower', 'miXedCaSE'); 

C# 
IMu.Handler = new IMu.Handler(); 
handler.Name = "Text::Convert"; 
handler.Destroy = false; 
handler.Call("toLower", "miXedCaSE"); 

will result in the following name / value pairs being sent to the server: 
"method" => "toLower" 
"params" => "miXedCaSE" 
"name" => "Test::Convert" 
"destroy" => "false" 

When the server processes this request it will not destroy the handler once the method 
has been called. Instead it will allocate the handler a unique identifier and return the 
identifier in the response: 
{ 
 "status" : "ok", 
 "result" : "mixedcase", 
 "id" : "4c37" 
} 

The Handler's request method (which receives the server's response from the 
Session's request method) stores the identifier in the handler object. It then uses this 
identifier in any subsequent requests made by the handler. Consider the following 
example: 



How a Handler Works 
 

 

 

Page 16  
 

PHP 
$handler = new IMuHandler(); 
$handler->name = 'Test::Convert'; 
$handler->destroy = false; 
$handler->call('toLower', 'miXedCaSE'); 
// second call to same handler 
$result = $handler->call('toUpper', 'all lower'); 

C# 
IMu.Handler = new IMu.Handler(); 
handler.Name = "Test::Convert"; 
handler.Destroy = false; 
handler.Call("toLower", "miXedCaSE"); 
// second call to same handler 
handler.Call("toUpper", "all lower"); 

The second call will result in the request sent to the server containing the following 
name / value pairs: 
"method" => "toUpper" 
"params" => "all lower" 
"id" => "4c37" 
"destroy" => "false" 

When the server receives this request it will not try to create a new handler (which 
would be problematic anyway as there is no name element passed in the request). 
Instead it will use the existing handler whose identifier is 4c37. If no handler with the 
correct identifier is found, the server will return an error response. 

 



How a Handler Works 
 

 

 

 Page 17 
 

Reconnecting to a Server 
When working in a stateless environment such as a web server, IMu client code often 
needs to reconnect to the same handler. To do this the client not only needs to specify 
the identifier of a handler it wants to re-use, but also needs to ensure that it connects 
to the same server process (see Using KE IMu API for details). 

To do this, the client code sets the Session object's connection member to suspend. 
When the next request is made, the Session's request method adds the setting: 
"connection" => "suspend" 

to the request. When the server process handles this request, it starts to listen for 
connections on a second port, one that is unique to that process. The server then tells 
the client the number of the port to reconnect on subsequently by including a 
reconnect member in the JSON object returned as the response: 
{ 
 … 
 "reconnect" : 45679, 
 … 
} 

The Session's request method stores the value in its port member. 
 





Understanding the KE IMu Server 
 
 

S E C T I O N  3  

Creating a New Handler 
Creating a new handler is relatively straightforward once it is understood how a 
handler works. In this section we build a simple handler to illustrate how it is done. 
The handler will check the status of the EMu background loads. 

The core of a handler is its server-side Perl package. The package must be a subclass 
of the KE::Server::Handler package and the package's full name must begin with 
KE::Server::Handler. Our handler will be called Example so its package name will 
be KE::Server::Handler::Example. 

In order for the server to be able to load the package it will need to be stored under 
either the local/etc/imuserver or etc/imuserver directory. It is good practice to 
develop the package in the local/etc/imuserver directory. This means we will be 
creating a local/etc/imuserver/KE/Server/Handler/Example.pm file. 

 

 Page 19 
 



Creating a New Handler 
 

 

 

Page 20 

Basic Structure 
Each handler should have a standard structure. The template for our Example handler 
is: 
use strict; 
use warnings; 
 
package KE::Server::Handler::Example; 
 
use base 'KE::Server::Handler'; 
… 
1; 

All Perl packages should  include the strict and warnings directives. 

All Perl packages must end with a value that evaluates to true so that the code loading 
the package can determine whether the package was loaded successfully. Using the 
value 1 as a statement on its own is the conventional way of doing this. 

The code follows the requirements of naming and subclassing described above. 

 In this case it is not necessary to provide a constructor method (i.e. a Perl sub 
new). In more complicated handlers, however, it may be necessary to do so. 
 

 
 



Creating a New Handler 
 

 

 

Adding a Method 
Each method which is able to be called from the client must be implemented as a Perl 
sub whose name starts with: 
method_ 

In our example we will start by providing a single method called checkLoad, which 
will take the name of a background load and return information about its status. 

 "camel case" is conventionally used for method names. Actually this is 
technically "lower camel case" where the first word starts with a lower case 
letter but subsequent words in the name begin with an upper case letter. 
Underscores should not be used in method names. Also by convention the 
methods are named to describe what they do and so, typically, start with a verb. 

This means our Perl package must include a sub called method_checkLoad. The 
method must take two arguments, the object reference and the parameters passed to 
the call method in the client code. The template for our method looks like this: 
sub method_checkLoad 
{ 
 my $this = shift; 
 my $loadName = shift; 
 
 # check the load 
 
 # return the result (just a place holder at the moment) 
 return $loadName . ' is running??'; 
} 

There are many ways of accessing the arguments passed to a Perl sub. The technique 
of copying each argument (using shift) into its own local variable, as shown above, 
is very common and recommended. 

 

 Page 21 
 



Creating a New Handler 
 

 

 

Page 22 

Trying It Out 
We now have a new handler with a method that can be called. Provided we have 
installed the package's .pm file in the correct place, we should now be able to write a 
simple client-side test program. 

First, restart the back-end server: 
emuload restart imuserver 

or, if that doesn't work: 
emuload stop imuserver && emuload start imuserver 

 When a new package is installed it is not strictly necessary to restart the IMu 
server. However, if changes are made to a package that the server may have 
already loaded, it is necessary to restart the server to ensure that it loads the 
latest version. The simplest rule is always restart the server when testing new 
server-side handlers. 

We can then write a simple client test program. The key parts of the test program are 
as follows: 

PHP 
$handler = new IMuHandler; 
$handler->name = 'Example'; 
$result = $handler->call('checkLoad', 'audit'); 
print("$result\n"); 

C# 
IMu.Handler handler = new IMu.Handler(); 
handler.Name = "Example"; 
Object result = handler.Call("checkLoad", "audit"); 
System.Console.WriteLine(result); 

All being well, this program should produce the output: 
audit is running?? 

If an error occurs, the call method will throw an exception. 
 

 
 



Creating a New Handler 
 

 

 

Server Tracing 
When the IMu server runs, its output and error streams are directed into a standard 
EMu load log file. 

 The current log file will be the most recently created file in the 
loads/imuserver/logs directory. 

The server writes tracing information into this log file. The tracing information is 
typically date and time stamped and includes the pid of the server process which 
writes the information. Here is an example of the information written when our 
sample program is run: 
2010-02-23 14:57:05: 14974 connection on port 45678 
2010-02-23 14:57:05: 14974 listening... 
2010-02-23 14:57:05: 14973 handling connection in this process 
2010-02-23 14:57:05: 14975 listening... 
2010-02-23 14:57:05: 14973 request: 
{ 
 'params' => 'audit', 
 'name' => 'Example', 
 'method' => 'checkLoad' 
} 
2010-02-23 14:57:05: 14973 creating new Example handler 
2010-02-23 14:57:05: 14973 destroying handler 
2010-02-23 14:57:05: 14973 handler (KE::Server::Handler::Example) is 
being destroyed (garbage collection) 
2010-02-23 14:57:05: 14973 response: 
{ 
 'status' => 'ok', 
 'result' => 'audit is running??' 
} 
2010-02-23 14:57:05: 14973 raising SocketEOF 
2010-02-23 14:57:05: 14973 caught stream error: SocketEOF 
2010-02-23 14:57:05: 14973 stream is being destroyed (garbage 
collection) 
2010-02-23 14:57:05: 14973 listening... 

In this trace we can see the arrival of our request, the creation of the new handler and 
the response. Notice also that the server destroys the handler once it has finished 

 Page 23 
 



Creating a New Handler 
 

 

 

Page 24  
 

servicing our request because we did not request otherwise. 

Reviewing the trace output is a good way to check the operation of a handler. 

A handler can add its own tracing information. To do so the package file must include 
KE::Server::Common. This module includes a global sub called trace which can be 
used to write information to the trace output. The trace sub takes at least two 
arguments. The first is the trace level (an integer). If this level is less than the level 
set for the server, the trace is written to the log. Otherwise it is discarded. The 
second argument is a simple printf style format string. 

We can add tracing to our Example handler: 
use KE::Server::Common; 
 
sub method_checkLoad 
{ 
 my $this = shift; 
 my $loadName = shift; 
 … 
 trace(2, 'load to check is %s', $loadName); 
 … 
} 

After restarting the server and re-running our test program, the log file includes our 
trace line: 
2010-02-24 09:24:00: 1166 creating new Example handler 
2010-02-24 09:24:00: 1166 load to check is audit 
2010-02-24 09:24:00: 1166 destroying handler 

 



Creating a New Handler 
 

 

 

 Page 25 
 

Returning a Result 
Our simple example needs to return whether the load is running or not. To do this it 
will return a status of alive or dead. Returning a value is straightforward. Here is 
our first implementation: 
sub method_checkLoad 
{ 
 my $this = shift; 
 my $loadName = shift; 
 
 trace(2, 'load to check is %s', $loadName); 
 
 my $check = `emuload status "$loadName"`; 
 my $status = 'dead'; 
 if ($check =~ /alive/) 
 { 
  $status = 'alive'; 
 } 
 
 trace(2, '%s load is %s', $loadName, $status); 
 
 return $status; 
} 

We can improve this a little. If the load is alive, we will also return the load's process 
id and the time it was started. The best way to return this information is as a Perl hash, 
which will be serialised as a JSON object: 
sub method_checkLoad 
{ 
 my $this = shift; 
 my $loadName = shift; 
 
 trace(2, 'load to check is %s', $loadName); 
 
 my $check = `emuload status "$loadName"`; 
 my $result = { status => 'dead' }; 
 if ($check =~ /(\d+)\s+alive\s+(.*)/) 
 { 
  $result->{status} = 'alive'; 
  $result->{pid} = $1; 
  $result->{startTime} = $2; 
 } 
 
 trace(2, '%s load is %s', $loadName, $result->{status}); 
 
 return $result; 
} 

 



Creating a New Handler 
 

 

 

Page 26  
 

Handling Errors 
Our example is not particularly robust. If no load name is passed by the client 
program, the $loadName variable will be undefined. Using an undefined value in 
certain contexts will cause Perl to generate warnings (which will appear in the log 
file). In this instance, using an undefined value or an empty string as the load name 
will actually cause the emuload command to return the status of all the EMu loads. 
This is not what our code expects and so odd results will be returned. 

It is better to catch these cases and generate an error. To generate an error the code 
should call Perl's die sub and pass to it a KE::Server::Exception object. This 
exception will be caught by the server's request processing loop and automatically 
returned to the client. 

To create an exception the handler code must include KE::Server::Common. This 
module includes a global sub called raise, which creates a KE::Server::Exception 
object from its arguments and calls die. The first argument to raise is a trace level 
(just as with trace). This is used to write information to the log about the exception 
being generated. The second argument is the exception identifier. This identifier is 
returned to the client, along with any further arguments passed to raise. The client 
Session object then raises its own exception: 
sub method_checkLoad 
{ 
 my $this = shift; 
 my $loadName = shift; 
 
 if (! defined($loadName) || $loadName eq '') 
 { 
   raise(2, 'ExampleMissingLoadName'); 
 } 
 
 trace(2, 'load to check is %s', $loadName); 
 … 
} 

 



Creating a New Handler 
 

 

 

 Page 27 
 

Creating a Client Handler 
Using simple handlers as in our example is straightforward using no more than the 
client's Handler class itself. However, for more complex handlers you may want to 
provide a client-side wrapper class that makes the handler easier to use. 

A client-side handler must be a subclass of the Handler class. Typically the class will 
provide methods for each of the corresponding server-side methods. Here is an 
example of a wrapper for our simple Example handler: 

PHP 
require_once IMu::$lib . '/handler.php'; 
 
class Example extends IMuHandler 
{ 
 public function 
 __construct($session = false) 
 { 
  parent::__construct($session); 
  $this->name = 'Example'; 
 } 
 
 public function 
 checkLoad($name) 
 { 
  return $this->call('checkLoad', $name); 
 } 
} 

C# 
class Example : IMu.Handler 
{ 
 public 
 Example(IMu.Session session) 
  : base(session) 
 { 
  Name = "Example"; 
 } 
 
 public 
 Example() 
  : base() 
 { 
  Name = "Example"; 
 } 
 
 public Object 
 CheckLoad(string name) 
 { 
  return Call("checkLoad", $name); 
 } 
} 



Creating a New Handler 
 

 

 

Page 28  
 

As a result, the handler can be used in a simpler, more natural way: 

PHP 
$example = new Example; 
$result = $example->checkLoad('audit'); 

C# 
Example example = new Example(); 
Object result = example.CheckLoad("audit"); 

Another good reason to create a client handler class is to simplify dealing with the 
value returned from the server. The Handler class' call method returns a generic 
value. This is flexible but can be inconvenient to deal with. 

Here we add a simple client-side ExampleResult class to make it easier to use the 
information returned by checkLoad: 

PHP 
class Example extends IMuHandler 
{ 
 … 
 public function 
 checkLoad($name) 
 { 
  $array = $this->call('checkLoad', $name); 
  $result = new ExampleResult; 
  $result->alive = $array['status'] == 'alive'; 
  if (array_key_exists('pid', $array)) 
   $result->pid = $array['pid']; 
  if (array_key_exists('startTime', $array)) 
   $result->startTime = strtotime($array['startTime']); 
  return $result; 
 } 
} 
 
class ExampleResult 
{ 
 public $alive; 
 public $pid; 
 public $startTime; 
} 



Creating a New Handler 
 

 

 

 Page 29 
 

C# 
class Example : IMu.Handler 
{ 
 … 
 public ExampleResult 
 CheckLoad(string name) 
 { 
  Hashtable hash = (Hashtable) Call("checkLoad", name); 
  ExampleResult result = new ExampleResult(); 
  result.Alive = hash["status"].ToString().Equals("alive"); 
  if (hash.ContainsKey("pid")) 
   result.Pid = int.Parse(hash["pid"].ToString()); 
  if (hash.ContainsKey("startTime")) 
   result.StartTime = 
    DateTime.Parse(hash["startTime"].ToString()); 
  return result; 
 } 
} 
 
class ExampleResult 
{ 
 public bool Alive; 
 public int Pid; 
 public DateTime StartTime; 
} 

This allows the handler to be used without knowledge of associative arrays and 
complex data structures: 

PHP 
$example = new Example; 
$result = $example->checkLoad('audit'); 
if ($result->alive) 
 print("The audit load is alive (pid = %d)\n", $result->pid); 
else 
 print("The audit load is dead\n"); 

C# 
Example example = new Example(); 
ExampleResult result = example.CheckLoad("audit"); 
if (result.Alive) 
 Console.WriteLine("The audit load is alive (pid = {0})", 
   result.Pid); 
else 
 Console.WriteLine("The audit load is dead"); 

 



Creating a New Handler 
 

 

 

Page 30  
 

The Handler Environment 
All server-side handlers are created by a KE::Server::Listener object. There is a 
KE::Server::Listener object for each server process which is running. This object 
is responsible for listening for new client connections, accepting these connections, 
creating new handlers, passing requests to handlers and destroying handlers when 
necessary. 

Each handler contains a reference to the listener object which created it. The handler 
can use this reference to interact with the listener. The listener provides some methods 
that handlers may find useful. These are covered in the following sections. 

 



Creating a New Handler 
 

 

 

Accessing EMu Tables 
One of the most common tasks for a server-side handler is to access an EMu table. 
The server provides a KE::Server::Module package to provide this access. 

 The Module handler makes extensive use of this package. 

A handler should not try to create a KE::Server::Module object directly. Instead it 
asks the listener to create the object for it. The reason for this is that certain tables 
subclass KE::Server::Module to provide additional functionality. The listener object 
knows how to create the appropriate object for each table. In this sense the listener 
acts as factory. 

To get a new table object, the handler should call the listener's getModule method, 
passing the name of the table: 
my $module = $this->{listener}->getModule('eparties'); 

The module object provides low-level access to the EMu table. The following 
methods can be used: 

• findKey($key) 
Searches the module for the record with a key of $key. 
Returns a KE::Server::Module::Cursor object. 

 Module Cursors are explained below (page 32). 

• findKeys($keys) 
Searches the module for the set of keys passed in the array reference $keys. 
Returns a KE::Server::Module::Cursor object. 

• findTerms($terms) 
Searches the module for the set of terms passed in $terms. The terms should be 
specified in the same way as for the findTerms method in the client-side Module 
class. 
Returns a KE::Server::Module::Cursor object. 

• findWhere($where) 
Searches using the Texql where clause passed in $where. 
Returns a KE::Server::Module::Cursor object. 

• emptyCursor() 
Creates an empty cursor. This is useful if you plan to insert records. 
Returns a KE::Server::Module::Cursor object. 

• addColumnSet($name, $columns) 
Associates a set of columns (in $columns) with a logical name (in $name) for later 
use. Similar to the same method in the client-side Module class. 

 

 Page 31 
 



Creating a New Handler 
 

 

 

Page 32 

Module Cursors 
Several KE::Server::Module methods return a KE::Server::Module::Cursor 
object. This object is used for working with the set of matching results for a table. 

The cursor object includes the following methods for changing the current row within 
the result set: 

• load($flag, $offset) 
Sets the current row to a position specified by $flag and $offset. These 
arguments work identically to those in the client-side Module class fetch 
method. 

• get($rownum) 
Sets the current row to a specific row number (row numbers start from 1). 

• next() 
• prev() 
• first() 
• last() 

Moves the current row as the method name suggests. 

All these methods return true if the operation succeeded and false otherwise. This 
is particularly useful with the next and prev methods for moving through the result 
set. 

 These methods do not raise an exception if end-of-file is reached. They simply 
return false. 

The cursor object also includes other methods: 

• tell() 
Returns the current row number. 

• hits() 
Returns the current estimated number of matches. 

• fetch($columns) 
Retrieves the information for the set of columns passed in the array reference 
$columns from the current records. 
Returns the fetched columns as a Perl hash. 

• store($values) 
Updates the current record. The $values argument is a reference to a Perl hash. 
The hash consists of a set of column name / value pairs to be updated in the current 
record. 

 
 



Creating a New Handler 
 

 

 

 Page 33 
 

• insert($values) 
Inserts a new record into the table. The $values argument is a reference to a Perl 
hash. The hash consists of a set of column name / value pairs to be inserted into the 
newly created record. 
Returns the irn of the newly created record. 

• sort($columns, $flags, $langid) 
Sorts the result set. The $columns argument is a string specifying the columns by 
which to sort. The $flags argument is a reference to an array specifying flags 
controlling the behavior of the sort. The flags can be any of the following strings: 
• word-based 
• full-text 
• compress-spaces 
• case-sensitive 
• order-insensitive 
• null-low 
• extended-sort 
• table-as-text 
• report-array 
• report-xml 
• sort-text 

If the report-xml flag is included, the sort method returns a handle to a file 
containing the summary represented as XML. If the report-array flag is included, 
the method returns a reference to a perl array containing the summary. 

 



Creating a New Handler 
 

 

 

Page 34  
 

Using the EMu Registry 
The handler's listener object's getModule method can be used to get access to the 
EMu Registry table. However, the listener also provides a getRegistry method to 
do this. This method will only create a new instance of a KE::Server::Module for 
the eregistry table the first time it is called. Subsequent calls to getRegistry will 
return the same instance. 

The object returned by the listener's getRegistry method is a 
KE::Server::Module::eregistry object. This is a subclass of the 
KE::Server::Module class and provides some useful methods for looking up 
Registry settings: 

• getValue($key, $default) 
Looks up the key value specified in $key. The form of $key is: 
Key|Key2|Key3… 
For example, to look up a user joe's group, the key would be: 
User|joe|Group 
Returns the Registry value or $default if the entry is not found. 

• getSetting($key, $default) 
Looks up a system setting. Calls getValue for 
Group|Default|Setting|$key 
and if that is not found, calls getValue for 
System|Setting|$key 
Returns the first setting found or $default if the entry is not found. 

• getMediaPath() 
Determines the system media path list. First checks 
System|Paths|ServerMediaPath 
If this entry is not found, the method then checks 
System|Paths|ServerPath 
If this entry is found, the path is considered to be a single multimedia directory 
under the ServerPath value. If not found, the path is considered to be a single 
multimedia directory under the $EMUPATH environment variable. 
Returns a reference to an array containing the set of directories. 

• getMimeType($extension) 
Looks up the mime type for the file extension passed in $extension by searching 
for 
Mime|$extension|Content Type 
Returns the mime type or $default if the extension is not found. If used in an 
array context, returns the two components of the mime type as separate array 
elements. 

 



Creating a New Handler 
 

 

 

 Page 35 
 

Temporary Files 
The handler's listener object also provides a convenient way to manage temporary 
files. There are several methods that simplify using temporary files: 

• getTempPath() 
Returns the Texpress tmppath setting. Usually /tmp/texpress. 

• getTempDir($template) 
Creates a new directory inside the temporary directory. The $template argument 
is a pattern used to generate the name of the new directory. Any upper case X 
characters in the template are replaced by random characters until a new name has 
been generated. If no upper case characters are included in the template, XXXX is 
added to the end of the template. If no template is passed at all, the template 
imuserverXXXX is used. 
Returns the full path to the new directory. 

• getTempHandle($template) 
Creates a new temporary file inside the temporary directory. The $template 
argument operates in the same way as for getTempDir. The file is opened for 
reading and writing. The file itself may be unlinked (removed from the file system) 
after it has been opened and will certainly be removed when the file is closed. 
Returns the handle to the new open file. 

• getTempFile($template) 
Generates a unique name for a file to be created inside the temporary directory. 
The $template argument operates in the same way as for getTempDir. The file is 
not created. This makes it possible for another call to getTempFile with the same 
template to be allocated the same name. For this reason it is better to use 
getTempHandle if possible. 
Returns the full "unique" name. 

 





 

 

Index 
A 

Accessing EMu Tables • 31 

Adding a Method • 21 

B 
Basic Structure • 20 

C 
Communication with the Server • 8 

Creating a Client Handler • 27 

Creating a New Handler • 19 

H 
Handler Names and Packages • 9, 10 

Handler Processing • 10 

Handling Errors • 26 

How a Handler Works • 5 

I 
Introduction • 3 

M 
Module Cursors • 31, 32 

R 
Reconnecting to a Server • 17 

Returning a Result • 25 

Re-using a Handler • 13, 15 

S 
Server Errors • 9, 14 

Server Response • 13 

Server Tracing • 23 

T 
Temporary Files • 35 

The Handler Environment • 30 

Trying It Out • 22 

U 
Using the EMu Registry • 34 

Using the Handler class • 6 
 


	Using the Handler class
	Communication with the Server
	Handler Names and Packages
	Handler Processing
	Server Response
	Server Errors
	Re-using a Handler
	Reconnecting to a Server
	Basic Structure
	Adding a Method
	Trying It Out
	Server Tracing
	Returning a Result
	Handling Errors
	Creating a Client Handler
	The Handler Environment
	Accessing EMu Tables
	Module Cursors
	Using the EMu Registry
	Temporary Files
	Index

