IMu Documentation

KE IMu API Technical
Overview

Document Version 1.1

IMu Version 1.0.03

EMu

Museum
Management
System

Contents

SECTION 1

SECTION 2

SECTION 3

Introduction

IMu architecture

IMu Server
IMu Handlers
Schematic

Advantages and benefits

Security

State can be maintained

Less network traffic

Integration and use by Third parties
Ongoing system support

Index

POW W

NOoO oo 0

Introduction

SECTION 1

Introduction

KE Software has offered a web API in one form or another since the mid 1990s. As
technology has evolved, KE’s web technology has been updated and rewritten. In 2003 PHP
was adopted as the client-side technology for KE’s web interface. This web interface was
designed to be configurable by technically minded museum staff and so produced much of
the required HTML for the pages. In 2006 the release of PHP version 5 provided an
opportunity to rewrite the lowest levels of this interface to provide a clearer API for use by KE
staff and other developers.

Both these previous versions, collectively known as EMuWeb, follow a very similar
architecture: they communicate over HTTP to a database service which returns structured
XML:

EMu Server 1. HTTP Regquest Web Server

2. XML Response

The client-side PHP library is responsible for forming any required TexQL, any security
mechanisms and any user session handling.

This approach has a number of issues:

. Record security is managed by the PHP library on the web server.

. The connection between the PHP library and the database is stateless, so a true
database cursor cannot be maintained.

. The API is available in PHP only.

. Integration with Third party systems requires development on the client (web server)
side.

IMu has been developed to address these issues. With IMu:

. Security is handled by the server.
. A stateful connection, and hence a true database cursor, can be maintained with EMu.
. The API library is available in PHP, Perl, ASP.NET and Java.

o Integration with Third party systems can be handled on the server by exposing custom
API hooks through IMu handlers.

KE IMu API Technical Overview & 4= & [] ' i 1

IMu architecture

SECTION 2

IMu architecture

IMu Server

Central to IMu is the IMu Server, which handles communication and management of the
different handlers available to the client API. Data is transferred over the network using
JSON. The IMu Server may be on the same machine, or a separate machine, to the EMu
database.

IMu Handlers

Handlers provide the application functionality of the system in IMu. There may be any
number of handlers in an IMu system, some distributed with EMu by default, and others
written specifically to suit a customer's needs.

A server-side handler is matched by a client-side handler, and the pair communicate
transparently through the IMu Server, which maintains state as necessary.

Two IMu Handlers, 1Mucursor and IMuModule, are distributed with the IMu client API and
their usage is outlined in the relevant APl documentation. They provide a low-level query
mechanism to EMu and require a level of system knowledge to use.

The handler model allows specific pieces of functionality to be produced for individual
customers, and custom hooks to be exposed through the API.

6 APl Hooks can simplify complex development by exposing custom
functionality to the client-side and returning data structured to suit different
needs as specified.

KE IMu API Technical Overview §& 4= @& [| § % 3

IMu architecture

Schematic
Mu Server JSON Web Server (.net, php, java, perl)
Handler 1 Handler 1
- &
Handler 2 Handlar 2
- '
Handler 3 —.[Handler 3
EMu
Parties Mulimedia
Mamratves
Catalogue

6 Arrows show direction of data flow; data and EMu modules used will vary
between customer and application.

4 --E N AR KE IMu API Technical Overview

Advantages and benefits

SECTION 3

Advantages and benefits

Amongst the advantages and benefits offered by IMu are the following:

Security

Movement of security logic to the server portion of IMu results in an increase in
security. With the previous EMuWeb API, validation of user input to prevent SQL
injection had to be performed at the client (web server) side. With IMu, additional
safeguards can be put in place server-side to check against this.

Because state can be maintained between web client and IMu handler, enhanced
log-in and client authentication mechanisms are available to developers with very little
additional programming overhead.

Database updates and insertions can be moved server-side where code can be
supported by KE Software.

6 The IMu model is inherently more secure than the previous API.

State can be maintained

Logic within the IMu Server means that state between JSON transactions may be
maintained between web client and server requests. Thus a record-set may be
uniquely associated with a user’s browser session, but the data of the set held entirely
server-side. This offers a significant advantage over standard web methods available,
particularly when dealing with museum collections of many thousands of records.

Very large sorts, record updates, batch updates, batch deletions and record-set
merging are all available with a database cursor.

6 Maintaining a stateful connection into the system is possible and is handled
simply by IMu.

Less network traffic

JSON incurs far less network overhead than XML.

Maintenance of state means less data needs to be sent between database server and
client application: data is only sent when it is needed.

KE IMu API Technical Overview §& 4= @& [| § % 5

Advantages and benefits

Integration and use by Third parties

With any database integration the most common obstacle is knowledge of the database
schema. EMu’s object orientated model has a schema that has been designed to fit
SPECTRUM standards for the needs of all collections management processes. However
this is a flexible model and is configured and used in different ways depending on an
organization's needs. As such KE Software is often asked to provide integration work to
ensure the data model and relationships are maintained. The exception to this is if there are
in-house developers who understand the schema, have the technical skills and can support
their own integration work.

By developing customized IMu handlers KE can expose necessary parts of the system to
Third party developers. Thus a Third party is able to specify precisely which data it would
like, and what API calls it would like to make to get it. Additionally, database updates and
insertions can be validated by a server-side IMu handler before being applied to EMu.

The availability of the APl in most commonly used web languages (PHP, Perl, ASP.NET and
Java) also makes IMu easy to use by Third parties.

6 The IMu API is much more accessible to Third parties because of its
availability in many languages and its ease of use.

6 - - o« 6 [] . i KE IMu API Technical Overview

Advantages and benefits

Ongoing system support

By moving much of the business logic into an IMu handler produced by KE Software the
customer makes most use of the support agreement which is often in place with KE.

Previously, any database updates or insertions would have to validated at the web developer
/ web server side. This would often prove a barrier to many customers who would be hesitant
in placing this level of trust in a party with which they had a transient relationship. The IMu
model makes it possible for KE to handle data updates (maintaining any such logic under the
support agreement) and therefore makes the capture of user contributed information much
more accessible to our customers.

6 By producing server-side APl hooks KE can cover the business logic and
database interactions under the pre-existing support agreement.

KE IMu API Technical Overview §& 4= @& [| § % 7

Index

A
Advantages and benefits ¢ 5

|
IMu architecture * 3
IMu Handlers « 3
IMu Server * 3
Integration and use by Third parties * 6
Introduction ¢ 1

L
Less network traffic ¢ 5

(0]

Ongoing system support * 7

Schematic « 4
Security ¢ 5

State can be maintained ¢ 5

Page 9

	Introduction
	IMu architecture
	IMu Server
	IMu Handlers
	Schematic

	Advantages and benefits
	Security
	State can be maintained
	Less network traffic
	Integration and use by Third parties
	Ongoing system support

	Index

