

www.kesoftware.com
© 2011 KE Software. All rights reserved.

IMu Documentation

Developing Web Pages with
IMu Web

Document Version 1

EMu Version 4.0

Contents

S E C T I O N 1 Introduction 1

S E C T I O N 2 Overview 3
Processing a request 4

S E C T I O N 3 Development Setup 5
IMu Server 6
Installing the IMu software 12
Setting up a Web Server 14

S E C T I O N 4 How a request is processed 17
Loading the IMu API 18
Tracing 19
Request parameters 21
Loading the request-specific file 22
Creating a request-specific object 24
Configuration 25
Processing 27

S E C T I O N 5 Generating output 29

S E C T I O N 6 Themes 31
XSLT 32
How the XSLT is processed 33
XHTML 36
CSS 37
Multilingual Pages 38
JavaScript 40

S E C T I O N 7 Browsing 41
Example: IMU Web's london theme 45

S E C T I O N 8 Search and Display 49
Search Page 50
Running a Search 55

Set of EMu modules 55
Search alias 56
Record view 57
The load request 58

Displaying Results 60
Example: List view 64

JavaScript 66

S E C T I O N 9 User Preferences 67

S E C T I O N 1 0 Collections 71

S E C T I O N 1 1 My Museum 75
Collection Details 79

S E C T I O N 1 2 Deployment 81
Client back-end and IMu Server 82
Bundling the Development Environment 83
Installing the Bundle 84
Client’s Web Server Setup 85

Index 87

Introduction

S E C T I O N 1

Introduction
IMu, or Internet Museum, broadly describes KE Software's strategy and toolset for
distributing data held within EMu via the Internet. Distribution includes the
publishing of content on the web, but goes far beyond this to cover sharing of data
via the Internet (Portals, online partnerships, etc.); publishing content to new
mobile technologies; iPod guided tours, etc.

The core of IMu is a back-end server and a set of APIs which provide access to
EMu data and multimedia.

IMu Web is functionality (built using the PHP API) to provide a standard but
configurable (out-of-the-box) set of web pages for browsing and searching EMu
collections.

This document provides details of how IMu Web works, how it can be configured
and how to deploy IMu Web to client sites.

 Page 1

Overview

S E C T I O N 2

Overview
IMu Web’s pages use a conventional three-tier web-based architecture:

• A browser requests a page from a Web Server running IMu Web.
• IMu Web in turn requests information from an IMu Server running in an EMu

environment.
• This information is then marked up as HTML and returned to the browser.

 The Web Server and the IMu Server may run on separate machines or on the
same machine. If they run on separate machines, which is common when the
Web Server machine sits in a Demilitarised Zone (DMZ), ensure that any
firewall between the Web Server machine and IMu Server machine does not
prevent proper operation. This is explained in more detail below.

 Page 3

Overview

Page 4

Processing a request
IMu Web’s processing of a request is quite complex. The following provides an
outline of the steps typically involved in accepting the request and returning the
results to the browser:

1. The browser submits its request using a conventional HTTP GET. All IMu Web
pages are requested using URLs with the form:
http://web-server/path/imu.php?request=type...
All requests invoke the same initial piece of code, imu.php. The first
parameter passed to this code is the type of the request. Any additional
parameters are passed after the request type.

2. The web server invokes its PHP module to execute imu.php.

 IMu works with standard web servers which can run PHP. This includes
Apache and Microsoft’s Internet Information Server (IIS). No specialised
web engine is required.

3. The imu.php code checks the request type and loads a request-specific file.
This file defines a class and uses it to create an object to handle the particular
type of request. Usually the request object uses IMu's PHP API to submit the
request to the appropriate IMu server (there can be multiple IMu Servers
running on the one machine, each for a different web environment).

4. The IMu server processes the request and returns data to the requesting PHP
object.

5. The PHP object marks up the returned data as XML.
6. The PHP object locates the appropriate XSLT stylesheet associated with the

request and uses PHP’s XSLT processor to apply the stylesheet to the XML
document.

7. The resulting HTML generated by the previous step is returned to the
browser. The HTML includes references to CSS stylesheets which are used to
apply the look and feel to the page. The HTML may also include references to
JavaScript files. The browser then runs the JavaScript to apply effects such as
page transitions and additional markup.

Development Setup

S E C T I O N 3

Development Setup
To develop IMu Web pages, IMu must be set up on a development machine. Set
up includes installation and configuration of:

1. The IMu Server within the appropriate EMu back-end environment
2. The IMu software
3. A Web Server

 Page 5

Development Setup

Page 6

IMu Server
All IMu applications require an IMu server to be running in the appropriate EMu
back-end environment (there can be multiple IMu Servers running on the one
machine, each for a different web environment). The IMu server (called
imuserver) is run within an EMu back-end environment as a standard EMu load.

 This document describes the development of pages for a back-end
environment running EMu version 4.0.02 or later. This version of EMu
includes an appropriate version of the IMu server.

The role of imuserver is to listen for connections from IMu API programs,
accept requests and respond. The server runs as either a single process or can start
several child processes.

Before the IMu server can be started it must be configured. IMu server is
configured by editing the etc/imuserver.conf file in the EMu environment.
Each environment will contain an etc/imuserver.conf.sample file which can
be copied and edited.

The following configuration parameters will almost certainly need to be set:

main-port This is the port number that imuserver will use to listen for
initial connections from the IMu API. By convention, on a
development machine this number is set to 20000 more than
the client’s standard EMu port number.
For example, the Art Demo client uses a port number of
20136. This means that the value of main-port for Art
Demo imuserver would usually be 40136.
If this value is not set, it will default to 40000.

Development Setup

 Page 7

data-source This parameter is used by imuserver to determine how to
connect to a texserver running in the appropriate EMu back-
end environment. The value can be:

• A port number or a service name
• A host name and a port number/service name (as

host:port)
• An empty string

If this value is not set, it will default to a port number 20000
less than the value used for main-port.
If the value contains a port number or service name,
imuerver uses it to create a socket connection to a
texserver process, which is the same way that the EMu
client creates its connection. If a host name is not included
with port number or service name, the connection will be
made to the local machine (127.0.0.1).
If the value is empty (i.e. set to an empty string), the IMu
Server will use a pipe to connect to texserver, rather than a
socket.
If a socket connection is used, imuserver will try to log in
as the user specified in the user-name entry (see below). If
no user-name is specified, imuserver will try to log in as
the user running the imuserver (almost certainly user emu).
It is very important to be aware that for security reasons
imuserver does not store the user’s password. This means
that it must be possible to authenticate the user passed by
imuserver to texserver without the use of a password. This
is achieved by enabling rhosts authentication on the server
machine.

The following settings are less likely to require modification:

user-name This is the name of a user that imuserver will pass to
texserver for authentication (see data-source).
This only applies if imuserver is using a socket connection
to texserver. Be aware that this user must be able to be
authenticated by texserver without requiring a password.

Development Setup

Page 8

visibility This value is used to control which records imuserver can
retrieve when searching EMu tables. The value can be:

• internet
Only match records with the
AdmPublishWebNoPassword column set to Yes.

• intranet
Only match records with the
AdmPublishWebPassword column set to Yes.

• all
Match any records.

If this value is not set, it will default to internet.
process-count This is the number of processes that imuserver will create

to listen for connections. In environments where there may
be a high number of requests it is useful to have several
processes listening for connections and handling requests
concurrently.

 Each process that is started connects to a
texserver. This means that each process will
use an EMu licence slot.

reconnect-port This is the port number that each server process will start at
when trying to allocate a unique port for handling client
reconnections.
For example, suppose that process-count is set to 3 and
that reconnect-port is set to 50000. When imuserver
starts, three processes will be created. Each process will
independently attempt to allocate a unique port to listen for
reconnections. All three processes will first attempt to
allocate port 50000. One will succeed and the other two will
fail. The two unsuccessful processes will then move on to try
to allocate port 50001. One will succeed and the other will
fail. The unsuccessful process will then allocate port 50002.
Reconnection to a server is explained in detail in the
Maintaining State section of Using KE IMu API (With PHP).
If this value is not set, it defaults to 5000 more than the
value of main-port.

Development Setup

 Page 9

admin-port This is the number of a secondary port that imuserver will
also listen on for connections. The difference between this
setting and main-port becomes significant when
imuserver is running several child processes to handle
requests. A connection on main-port may be handled by
any of the processes (which is typically what you want),
whereas a connection on admin-port is guaranteed to be
accepted only by the master process which controls all the
other processes. This makes this useful for administering the
imuserver itself, hence the name admin-port.
If this value is not set, it defaults to 10000 more than the
value of main-port.

language This is the two-letter code for the language to be used if
none is supplied by the API.
If this value is not set, it defaults to en.

handler-
timeout

When IMu web (and other IMu client applications) use
functionality in the IMu server, it causes the server to
allocate server-side objects which are known as handlers.
These handlers are maintained by the server until the client
advises the server to destroy them.
However, with stateless applications such as IMu Web the
client API may never get a chance to advise the server to
destroy the handlers. This can result in handlers being
maintained by the server when they are not really required.
This can impose a significant memory overhead on the
server machine. For this reason the server will automatically
destroy handlers which have not been used for a certain
time.
The handler-timeout parameter specifies how long a
handler can remain unused for before it is automatically
discarded by the server. The value is specified as a number
followed by a letter h (for hours), d (for days) or w (for
weeks).
Handlers are described in detail in Understanding the KE
IMu Server.
If this value is not set, it defaults to 1h (one hour).

Development Setup

Page 10

context-
timeout

Each time IMu Web (and other IMu client applications)
create a new connection to the IMu server, the server process
allocates a new connection "context". The context maintains
information about the connection, including the texserver
which it is using and a list of all the active handlers. The
context is usually destroyed (including all its handlers) and
the associated texserver is shutdown when the client
application terminates the connection.
However, with stateless applications such as IMu Web the
client API may never get a chance to terminate the
connection. This can result in connection contexts being
maintained by the server when they are not really required.
For this reason the server will automatically destroy
connection contexts which have not been used for a certain
time.
The context-timeout parameter specifies how long a
connection context can remain unused for before it is
automatically discarded by the server. The value is specified
as a number followed by a letter h (for hours), d (for days)
or w (for weeks).
If this value is not set, it defaults to 3h (three hours).

temp-path This is the path to a directory where imuserver creates
temporary files.
If the value is not set, it defaults to the same location
directory as used by texserver for its temporary files.

trace-file The is the name of a file used to record server-side tracing
information. A value of STDOUT causes all information to be
written to imuserver’s standard output. This is normally
what is wanted if imuserver is started as an emuload.
If the value is not set, it defaults to STDOUT.

trace-level This number indicates the amount of server-side tracing
information which is generated. A higher number will
generate more information. A value of 1 will generate
minimal output and a value of 0 will cause no information to
be generated at all.
If the value is not set, it defaults to 1.

trace-prefix This specifies the format of text added to the start of each
line of tracing information.

Once configured, the imuserver can be started. The server can be started as
follows to test that the configuration is working:
emu-artdemo@lygon[1] imuserver
2010-09-15 11:31:24: 19761 imuserver started with the following
configuration:
{

Development Setup

 Page 11

 'trace-file' => 'STDOUT',
 'visibility' => 'internet',
 'language' => 'en',
 'trace-level' => 1,
 'data-source' => 20136,
 'admin-port' => 50136,
 'handler-timeout' => 3600,
 'context-timeout' => 10800,
 'reconnect-port' => 45136,
 'main-port' => 40136,
 'process-count' => 1,
 'temp-path' => '/tmp/texpress',
 'trace-prefix' => '%D %T: %p '
}

This output indicates that the server is listening for connections and shows the
configuration parameters that have been set.

The server is then ready to be started using the standard emuload:
emu-hv@lygon[2] emuload start imu
fifo alive 19 Aug 2010 15:42:35
imu 19783 started 15 Sep 2010 11:34:33

The imu load creates a log file (which is the trace output of imuserver) in the
loads/imu/logs directory. As with other loads the name of the log file is the date
and time the load was started. However, the imu load also creates a link to the file
called current, which makes it easy to look at the current imuserver tracing:
emu-hv@lygon[3] cd loads/imu/logs
emu-hv@lygon[4] tail –f current
2010-09-15 11:34:32: 19783 imuserver started with the following
configuration:
{
 'trace-file' => 'STDOUT',
 'visibility' => 'all',
 'language' => 'en',
 ...
}
...

Development Setup

Page 12

Installing the IMu software
To use and create IMu Web pages in a development environment an imu user
account needs to be created on the development machine. The imu user account
should belong to an imuadmin group. This is directly analogous to the emu user in
group emuadmin used for managing EMu back-end environments and doing EMu
development.

Typically the imu and emu user accounts will exist alongside one another on the
one development machine. However, there should be no reliance of one upon the
other.

Once the imu user account has been created the IMu client software can be
checked out. First log in as user imu and then use CVS.

Log in:
$ touch $HOME/.cvspass
$ CVSROOT=:pserver:user@cvs.mel.kesoftware.com:/home/cvs/imu
$ export CVSROOT
$ cvs login
Logging in to:
 pserver:andrew@cvs.mel.kesoftware.com:2401/home/cvs/imu
CVS password:

Checkout the IMu environment:
$ cd $HOME/..
$ cvs checkout imu
cvs checkout: Updating imu
U imu/.cvsignore
U imu/.profile
cvs checkout: Updating imu/master
U imu/master/.cvsignore
U imu/master/.profile
cvs checkout: Updating imu/master/bin
...

Three directories will be created in imu’s home directory:

• CVS
• master
• tools

The CVS directory is used by CVS itself. The other two are similar in function to
the equivalent directories in the EMu back-end environment.

The master directory contains a template for developing clients-specific pages in
IMu Web. The following directories are included in the master directory:
bin

This includes scripts for the deployment of imu (imubldsetup and
imuinstall). These are described in more detail below.

Development Setup

 Page 13

lib

This contains the code for the IMu APIs. The APIs currently distributed for
IMu include those for .Net (in the dotnet directory) and PHP (in the php
directory). More information on using the APIs is available in Using KE IMu
API (With PHP).

web

This contains the code for IMu Web. Development of pages using IMu Web
is covered in this document.

ws

This contains the code for web services built using IMu.

Development of IMu Web pages is done in a similar way to the development of
EMu back-end environments. A client-specific directory is created alongside the
master directory and the appropriate files are "sync’d" from the master
directory to the client-specific directory.

One difference is that unlike EMu environments, the client-specific directories
used by IMu are, by default, given the name of the EMu Catalogue which the
client uses. For example, the Art Demo client uses a Catalogue called eart. To do
web page development for Art Demo you should use a directory called eart.

Setting up the client-specific directory is similar to the way it is done in EMu.
First you create the directory and then run the imusync command. If you want to
do IMu Web development, you also need to create an empty web directory so
imusync knows to sync the web components as well.

For example:
$ cd ~imu
$ mkdir eart
$ mkdir eart/web
$ imusync –c eart
Updating subpart bin...
 eart...
Updating subpart lib...
 eart...
Updating subpart web...
 eart...
Updating subpart work...
 eart...

This will link the appropriate files into the eart directory. You can then switch to
the eart environment:
$ client eart
Current client is eart
$ ls
bin lib web work

The environment is now set up.

Development Setup

Page 14

Setting up a Web Server
The final step in setting up the development environment is to have an appropriate
web server installed. IMu Web requires a web server which can run PHP version
5.0 or later. This includes standard servers such as Apache and Microsoft’s IIS.

IMu Web requires the version of PHP installed to include the following modules:

• ctype
Required for processing the data transmitted between the PHP API and the
IMu server.

• dom
Required for processing XML configuration files and for generation of XML
data.

• json
Required for generating JSON formatted output to be returned to the browser
(usually as part of an AJAX request).

• xsl
Required for processing the XML data and transforming it into HTML using
XSLT stylesheets.

Using PHP 5.3 or later is preferred because all of these modules are included by
default. Versions 5.0, 5.1 and 5.2 require these modules to be added separately.
The correct way to add these modules differs depending upon the operating
system and the web server being used.

Once the web server has been installed and PHP enabled and configured to use the
required modules, all that remains is to create a mapping between a URL and the
base directory containing the externally accessible files used to process IMu Web
requests. As mentioned before, all IMu Web pages have a URL of the form:

http://web-server/path/imu.php?request=type...

The imu.php file is in the environment’s web directory. For example, for the eart
environment the imu.php file is in ~imu/eart/web/imu.php. This means that the
web server needs a mapping between the path component of the URL and the
environment’s web directory. Suppose we want to serve pages from our eart
environment with a URL such as:
http://web-server/artdemo/imu.php?request=type...

and that the environment was installed in
/home/ke/imu/eart

We need to create a mapping between these.

Development Setup

 Page 15

In Apache this is done by either:

• Creating an alias such as
Alias /artdemo/ "/home/ke/imu/eart/web/"

-OR-

• Creating a symbolic link from the document root such as
ln –s /home/ke/imu/eart/web /path-to-document-root/artdemo

How a request is processed

S E C T I O N 4

How a request is processed
In this section we look in more detail at how IMu Web processes requests. By way
of illustration we look at the eart system. The correct setup of an IMu
environment is described in Development Setup (page 5).

When a browser requests a page from IMu Web the web server runs the code in
the environment’s web directory’s imu.php (e.g. ~imu/eart/web/imu.php). The
code in imu.php performs the following steps:

1. Loads the IMu API.
2. Enables tracing so that the processing of requests is logged.
3. Creates a list of request parameters.
4. Loads a separate file corresponding to the request parameter.
5. Creates an object of the request-specific class.
6. Call the object’s configure method to load configuration settings.
7. Calls the object’s process method to do the actual request processing.

Each of these steps is described below.

 Page 17

How a request is processed

Page 18

Loading the IMu API
The IMu API files are in IMu’s lib directory. The API is documented in Using
KE IMu API (With PHP).

How a request is processed

 Page 19

Tracing
Tracing or logging (the terms are used interchangeably) information is written to a
file called trace.txt. The file is in the same directory as imu.php. In our eart
example this corresponds to ~imu/eart/web/trace.txt.

This file is written to by the web server and must therefore have the appropriate
permissions. Whilst IMu’s tracing can create the trace file automatically it is very
likely (and a good thing) that the web server will not have permission to create
files in the environment’s web directory. For this reason the file should be created
manually. Once the file has been created the web server will still need permission
to write to it.

For unix systems running a server such as Apache there are two ways to do this:

• Give all users write access to the file
$ touch trace.txt
$ chmod 666 trace.txt
$ ls –l trace.txt
-rw-rw-rw- 1 imu imuadmin 0 Sep 22 12:18 trace.txt

-OR-

• Put the file in the same group as the web server and give the group write
access to the file. For example, if the web server runs in the group webservd:
$ touch trace.txt
$ chgrp webservd trace.txt
$ chmod 660 trace.txt
$ ls –l trace.txt
-rw-rw-rw- 1 imu imuadmin 0 Sep 22 12:18 trace.txt

The advantage of the first method is that it is simple to set up. The disadvantage is
that it allows all users on the machine to see and even alter the trace information.
The second method avoids this by restricting access to the imu user and any user
in the same group as the web server (which should be no one). The disadvantage
of the second method is that on most systems it requires root access to be able to
change the group of the file.

Once tracing is enabled each request is recorded in the trace file. The amount of
information recorded can be configured (see below). At a minimum the trace will
show:

• The date and time of request.
• The IP address of the requester.
• The specific type of request.
• Any additional request parameters.
• The name of the file and class which will be used to handle the request.

How a request is processed

Page 20

Here is a sample of trace information for a browse request:
2010-09-22 12:30:08: BEGIN
2010-09-22 12:30:08: request from 172.16.57.34
2010-09-22 12:30:08: request: browse
2010-09-22 12:30:08: file: common/browse.php
2010-09-22 12:30:08: class: IMuBrowseRequest
2010-09-22 12:30:08: script: /artdemo/imu.php
2010-09-22 12:30:08: base: /artdemo
2010-09-22 12:30:08: params:
2010-09-22 12:30:08: end params
2010-09-22 12:30:08: url: /artdemo/imu.php?request=browse
2010-09-22 12:30:09: END

How a request is processed

 Page 21

Request parameters
The parameters can be passed using either HTTP’s GET or POST. This allows the
page designer to choose which technique can be used for submitting forms.

How a request is processed

Page 22

Loading the request-specific file
Every IMu Web request must include a request parameter. This identifies what
type of request is being submitted. If a request parameter is not included,
imu.php will generate an error.

The request parameter is used to find the file that contains the code used to
handle the specific request.

To understand how the file is located it is necessary to understand how the
environment’s web directory is organised. In addition to the two files that we have
looked at already (imu.php and trace.txt) the directory may also contain up to
three sub-directories. When IMu Web needs to find a file it looks in these
directories:

• common
Contains files that are common to all IMu Web environments. These files are
managed by KE. They are present in the IMu master environment and
changes to these files are controlled using CVS.

• client
Contains files that are specific to the client environment. In our eart
example, the client directory contains files that are specifically used for
building pages that work for the eart Catalogue. These files are also
managed by KE. They are present in the IMu master environment and
changes to these files are controlled using CVS.

• local
Contains files that may be used at a particular customer’s site. These files are
not managed by KE. They are not present in the master environment and are
not controlled by CVS. An upgrade of IMu Web will not alter files in the
local directory in any way.

When IMu Web needs to locate a particular file it looks first in the local
directory then the client directory then the common directory. If the file is still
not found, IMu Web will raise an error.

Loading files in this way allows a client implementation to override a common
file and a local file to override a client file.

IMu Web uses this method when loading the file to handle the request. For
example, if a browser submits a browse request:
http://server/artdemo/imu.php?request=browse

imu.php first looks for a file called local/browse.php, then
client/browse.php and then common/browse.php. In a conventional IMu Web
environment the request handling code is all general purpose and so is contained
in the common directory. This means that when the browse request is submitted
IMu will find a corresponding common/browse.php file.

How a request is processed

 Page 23

imu.php loads the code in this file simply by using PHP’s standard require
mechanism. The file contains a class definition. This class must be a subclass of
the IMuWebRequest base class. The file must also set a global variable called
$class with the name of the class defined in the file. IMu Web uses this variable
to know what class of object to create (see below).

Here is an outline of the browse.php file:
<?php
require_once dirname(__FILE__) . '/request.php';

$class = 'IMuBrowseRequest';
class IMuBrowseRequest extends IMuWebRequest
{
 public function
 process()
 {
 …
 }
}

How a request is processed

Page 24

Creating a request-specific object
Once the request-specific file has been loaded it is used to create an object to
handle the request.

The request handling class must be a subclass of the IMuWebRequest base class.
This base class is defined in the common/request.php file. It provides useful
functionality for dealing with the request, including:

• Loading additional configuration settings.
• Getting and setting additional request parameters.
• Finding the first or all files with a common name in the local, client and

common directories.
• Creating a connection to the IMu server.
• Creating DOM document objects.
• Creating XSLT processor objects.

How a request is processed

 Page 25

Configuration
After the code in imu.php has created the request-handling object it calls the
object’s configure method, which is used to configure the request handler. The
base class’s configure method loads information from a configuration file called
config.xml.

The configure method looks for a config.xml file in each of the common,
client and local directories in turn. This allows standard configuration
information to be specified in the common/config.xml, client-specific
configuration information to be specified in client/config.xml (possibly
overriding values set in common/config.xml) and site-specific configuration
information to be specified in local/config.xml (possibly overriding values
from the other files).

The format of the config.xml file is straightforward. As the name implies it is an
XML file formatted as follows:
<?xml version="1.0"?>
<config>
 <default-lang>en</default-lang>
 <default-theme>london</default-theme>
 <default-view>list</default-view>
 <server-port>40136</server-port>
 <trace-level>1</trace-level>
 <use-javascript>yes</use-javascript>
</config>

The following values can be defined in the config.xml file:

cookie-duration IMu Web uses cookies to store information about a user.
This information is used to record user preferences and
hold the IRN of a record in the ewebusers table to re-
identify the user.
This value controls how long the cookie remains valid.
The value is a number followed by a single letter h (for
hours), d (days) or w (weeks).
If the value is not set, it defaults to 7d.

cookie-name This is the name of the cookie set in the browser. There
is usually no need to change this as the cookie is applied
only to a specific domain.
If the value is not set, it defaults to IMu.

default-lang This is the two-letter code for the language to be used.
If the value is not set, it defaults to en.

default-theme The name of the theme to be displayed by default.
Themes are explained in detail below.

How a request is processed

Page 26

default-view The name of the view to be displayed by default.
Views are explained in detail below.

google-maps-key IMu Web can display the location of specimens on
Google Maps. To be able to use the Google Maps API a
site must submit a key. This setting holds the key value.
Google Maps keys are freely available from Google at
http://code.google.com/apis/maps/signup.html.

server-host This is the name or IP address of a host machine running
imuserver that IMu Web will connect to.
If the value is not set, it will default to 127.0.0.1

server-port This is the port number that IMu Web will use to
connect to a machine running imuserver.
If the value is not set, it will default to 40000.

trace-level This number indicates the amount of client-side tracing
information that is generated. A higher number will
generate more information. A value of 1 will generate
minimal output and a value of 0 will cause no
information to be generated at all.
If the value is not set, it will default to 1.

use-java-script This value controls whether the pages returned by IMu
Web will run JavaScript. The value must be yes or no.
If the value is not set, it will default to yes.

use-yahoo-maps This value controls whether IMu Web’s mapping tools
will use Yahoo maps. The value must be yes or no.
If the value is not set, it will default to yes.

How a request is processed

 Page 27

Processing
The final step in handling a request is running the object's process method. This
method is where the actual request-specific processing takes place. Each of the
request classes provided with IMu Web includes a process method that is called
by imu.php.

The process method is responsible for interpreting the request, forwarding parts
of the request to the IMu server and generating the results. As such, imu.php
effectively operates as a simple web service. The results of the web service are not
generic data marked up as XML however, but data targeted explicitly for display
in a browser.

The standard IMu Web common directory includes code for handling the following
types of request. Each of these requests generates a browser page:

browse Implements the Browse Collections page.
search Implements the Search Collections page.
display Returns a paginated result set for display. If the user is using

JavaScript, results from this page are appended to the Search
Collections page rather than being displayed in a separate page.

museum Implements the My Museum page.
collection Generates a page for changing the details of a particular

collection (part of My Museum).

In addition to these files the common directory also includes code for other
processing. These requests do not generate a browser page:

multimedia Returns a multimedia resource which has been retrieved from the
IMu server. If the resource is an image, it may be resized or
reformatted dynamically.

load Generates a result set. The result set may be generated by a
search, by restoring a saved set of records or by loading a set of
records listed in an attachment column. It is these results that the
display request fetches for display.

hits Retrieves the number of matches for each module included in a
load request.

group Adds matches to or removes matches from a user’s collection.
config Manages the user’s configuration. This includes the preferred

language and theme and whether or not to use JavaScript with the
pages.

Most of these types of request use the IMu Server to run a search, fetch data from
an EMu table or retrieve multimedia. This document does not describe in detail
how IMu Web interacts with the IMu server - for details about how to use the IMu
PHP API see Using KE IMu API (With PHP).

How a request is processed

Page 28

Once a request has retrieved information from the IMu Server it must mark it up
for return to the browser. Requests such as browse, search and display must
ultimately produce HTML that can be displayed in the browser. There are several
ways this might be done, and each with advantages and disadvantages:

Direct HTML
Generation

Generate HTML directly from the request’s process
method. This is the conventional PHP way to generate
output.
Direct HTML Generation is simple for a PHP programmer
to understand. It is also probably more efficient in terms of
page generation speed. However, it does not provide any
separation of the data acquisition from the creation of the
actual user-interface (the HTML). This makes it difficult to
implement different views of the same data without code
replication.

Browser-based
XSLT
Transformation

Mark up the data as XML and return it to the browser along
with an embedded reference to an XSLT stylesheet. The
browser then fetches the stylesheet and uses it to transform
the XML to HTML.
Browser-based XSLT Transformation provides very
effective separation between the acquisition of the data and
the creation of the HTML. The data is passed to the browser
and the rules for generating the HTML are kept in a separate
XSLT file which the browser fetches from the server and
then uses to transform the data.
However, the XSLT processing capabilities of different
browsers differ markedly. Creating portable stylesheets that
can be processed on a large variety of browsers is difficult.
In addition, having the browser do all of the XSLT
processing is probably the least efficient in terms of time
taken to generate the final HTML.

Server-based XSLT
Transformation

Mark up the data as XML and then transform it using an
XSLT stylesheet and PHP’s XSLT processor.
Server-based XSLT Transformation is midway between the
other two techniques. The separation between the
acquisition of the data and the creation of the HTML is
maintained but because the XSLT is processed on the server,
it is more robust, more efficient and easier to debug.

IMu Web uses Server-based XSLT Transformation. Data (usually retrieved from
the IMu server) is marked up into a DOM document (an internal representation of
XML). An appropriate XSLT stylesheet is then loaded and applied to the
document. Finally, the HTML generated by the transformation is returned to the
browser.

We look at this generation of the output in more detail in the next section.

Generating output

S E C T I O N 5

Generating output
IMu Web requests generate output in several steps:

1. A DOM document is created to represent the data to be returned to the
browser as XML.

2. An XSLT stylesheet is loaded.
3. An XSLT processor is created and associated with the stylesheet.
4. The DOM document is transformed using the processor.
5. The generated XHTML is printed.

IMu Web’s search request, which delivers back to the browser an HTML page
containing a search screen with a set of tabs, is a good place to see these steps.
Here is the entire contents of the search.php file:
<?php
require_once dirname(__FILE__) . '/request.php';

$class = 'IMuSearchRequest';
class IMuSearchRequest extends IMuWebRequest
{
 public function
 process()
 {
 $xml = $this->newDocument();
 $xml->startElement('search');
 $xml->writeElement('page',
 $this->delParam('page', 'simple'));
 $xml->endDocument();

 $xslt = $this->newStylesheet('search');

 $proc = $this->newProcessor($xslt);

 $html = $proc->transform($xml);
 $html->printXHTML();
 }
}

The first lines of the process method generate a DOM document. The document
is created using IMuWebRequest’s newDocument method. This method creates a
new IMuWebDocument object. The IMuWebDocument class is itself a subclass of
PHP's standard DOMDocument class and is described in detail in Using KE IMu API
(With PHP).

The document is structured as so:
<search>
 <page>simple</page>
</search>

 Page 29

Generating output

Page 30

The value of the page element can be specified using a page= parameter in the
URL. IMuWebRequest’s delParam method used here:
this->delParam('page', 'simple')

removes the page parameter from the list of request parameters and returns it. If
no page parameter was include in the request, the value simple is used instead.

Once the document has been constructed the search request loads the appropriate
stylesheet to be used to transform the XML:
$xslt = $this->newStylesheet('search');

This method creates a new IMuWebStylesheet and then finds and loads the
stylesheet whose name is passed as an argument. The IMuWebStylesheet class is
defined in common/stylesheet.php. An XSLT stylesheet is itself an XML
document so, appropriately, the IMuWebStylesheet class is a DOM document (it
is a subclass of IMuWebDocument).

The way IMuWebStylesheet finds the appropriate stylesheet to load depends on
the theme configured by the user. This is described in detail in the next section.

After the stylesheet has been loaded the remaining three steps are quite
straightforward:
$proc = $this->newProcessor($xslt);

$html = $proc->transform($xml);
$html->printXHTML();

The newProcessor method creates a new IMuWebProcessor and associates the
stylesheet with it. IMuWebProcessor is a wrapper around the standard PHP
XSLTProcessor class. (For technical reasons IMuWebProcessor is not a subclass
of XSLTProcessor.)

The processor’s transform method is then called to process the XML into a new
XHTML DOM document. Finally the XHTML is printed to return it to the
browser.

Themes

S E C T I O N 6

Themes
One of the goals of using XSLT transformations to build the HTML is to allow the
same data to be represented in a variety of ways. IMu Web calls these different
ways of displaying the data themes.

IMu Web themes are basically a set of XSLT stylesheets, CSS stylesheets,
JavaScript files and associated images. Because they are specific to a particular
client’s Catalogue, the themes are typically stored in the web/client directory.

When a user visits an IMu Web page for the first time, IMu Web sets a cookie in
the user’s browser which contains the name of the theme to use to build the pages.
The theme is initially set to the default-theme value in the config.xml file (see
above).

Every time a page is requested, IMu Web gets the theme name from the cookie.
Once IMu Web knows which theme is being used it can search for and load the
appropriate XSLT stylesheet.

For example, suppose the theme set in the cookie is called london. The search
request code in the previous section loads a stylesheet called search using the
newStylesheet method:
$xslt = $this->newStylesheet('search');

This code will try to locate a file called themes/london/search.xsl. As in many
other cases IMu Web will first look in the local directory, then in the client
directory and then in the common directory. For most themes the files are stored
under the client directory.

 Page 31

Themes

Page 32

XSLT
The stylesheet is a standard XSLT file. The file can be constructed in many ways.
It is beyond the scope of this document to describe how to use XSLT. A good
XSLT tutorial can be found online at http://www.w3schools.com/xsl/.

IMu Web uses a common structure for its XSLT. The following is an example of a
preamble commonly used at the start of IMu Web stylesheets:
<?xml version="1.0"?>
<xsl:stylesheet version="1.0"
 xmlns:xsl="http://www.w3.org/1999/XSL/Transform"
 xmlns:imu="http://kesoftware.com/imu">

 <xsl:import href="common.xsl"/>

There are a few things to note here:

• The XSLT stylesheets themselves are conventionally encoded in UTF-8. That
is, there is no encoding attribute in the <?xml?> tag.

• IMu Web stylesheets typically add an imu namespace to the document so that
tags such as <imu:img>, <imu:string> and <imu:submit> can be included
in the XSLT document. These are described in more detail below.

• The stylesheet imports the contents of the common.xsl stylesheet. This is a
standard way to include common features in different pages. In fact
common.xsl actually drives the transformation process, calling templates
which are actually defined in the other stylesheets.

The theme’s common.xsl file typically imports a shared common.xsl file:
<xsl:import href="../shared/common.xsl"/>

This means that commonly used templates can be shared across all themes.

 It is important to realise that the working directory of the XSLT processor is
the directory containing the master stylesheet. Relative path names used in
the stylesheet (such as ../shared in the example above) must be relative to
this directory.

The theme’s common.xsl file also defines the format of the output generated:
<xsl:output method="xml" version="1.0"
omit-xml-declaration="yes"/>

 It may seem a little odd that the output method is set to be xml rather than
html. However, IMu Web actually generates XHTML (HTML formatted
according to the stricter syntax of XML) and specifying an output of XML
causes better XHTML to be created.

Themes

 Page 33

How the XSLT is processed
The common.xsl file defines a special xsl template which is the starting point of
the XSLT processing:
<xsl:template match="/">
 <html>
 <xsl:attribute name="dir">
 <xsl:value-of select="$imu-lang-dir"/>
 </xsl:attribute>
 <head>
 <xsl:call-template name="include"/>
 <xsl:call-template name="title"/>
 </head>
 <body>
 <xsl:call-template name="body"/>
 </body>
 </html>
</xsl:template>

This template performs five important tasks:

1. It creates the top-level structure for the XHTML page being generated.
2. It sets an attribute on the page’s top-level html element defining the

direction that the text used in the page should be displayed. This value is
either ltr for languages which display text from left to right or rtl for
languages which display text from right to left. IMu Web uses the two letter
language code defined in the configuration file (page 25) to determine
whether the value should be ltr (most languages) or rtl (Arabic and
Hebrew).

3. It calls the include template. This template is used to include references to
CSS stylesheets and JavaScript source code.

4. It calls the title template. This template is used to set the title of the page
being generated.

5. It calls the body template. This template generates the actual page contents.

To understand what happens when each of these templates is called it is important
to first understand how XSLT’s import works. When a stylesheet imports another
stylesheet, the templates defined in the first (importing) stylesheet take precedence
over those defined in the second (imported) one; we'll call them S1 (importing)
and S2 (imported). If both the S1 and S2 define templates with the same name, the
template defined in S1 take precedence over those defined in S2. In our example
the stylesheet search.xsl imports common.xsl. If both of these define a template
called body, the one defined in search.xsl will be called rather than the one in
common.xsl.

This is useful as it allows generic functionality to be defined in the imported
stylesheet (S2 or common.xsl in our example) which can be overridden in the
importing stylesheet (S1 or search.xsl in our example) where required. This
technique is used throughout the IMu Web stylesheets.

Themes

Page 34

Consider the title template. A version of title is defined in common.xsl. A
stylesheet which imports common.xsl can choose to use the standard title
template or to define a new one.

Overriding templates can actually take place at several levels. For example, the
version of body defined in common.xsl simply creates an outer level HTML div
element and then calls three other templates:
<xsl:template name="body">
 <div id="body">
 <xsl:call-template name="header"/>
 <xsl:call-template name="middle"/>
 <xsl:call-template name="footer"/>
 </div>
</xsl:template>

Instead of overriding the body template a stylesheet which imports common.xsl
can override any of header, middle or footer. This gives a finer level of control
while using as much common functionality as required. It is most common for a
stylesheet to override the middle template but not override the header and
footer templates. This allows each page to include a common header and footer
section around its own content.

 The template names (such as body) have no special significance. They are
named this way to identify their roles in the generation of the page but they
have no direct association with any HTML element names.

There is no way of calling a template which has been overridden. This is
unfortunate because it means that an overriding template cannot use functionality
that is present in the base template. For this reason, IMu Web’s base templates
which can be overridden call separate templates which actually implement their
functionality. For example, the include template in common.xsl calls another
template to generate the HTML which references the standard CSS stylesheets and
JavaScript code. These secondary templates follow a naming convention which
ensures they do not clash with other templates: the name consists of the theme
name followed by the stylesheet name followed by the base template name. For
example, here is the general include template in common.xsl for a theme called
london:
<xsl:template name="include">
 <xsl:call-template name="london-common-include"/>
</xsl:template>

Separating the base functionality from the overridden template means that the
overriding template can still use the base functionality. For example, here is the
include template in search.xsl, which overrides the one in common.xsl:
<xsl:template name="include">
 <xsl:call-template name="london-common-include"/>

 <!-- search-specific includes -->
 <link rel="stylesheet" type="text/css"
 href="client/themes/london/search.css"/>
 ...

Themes

 Page 35

The HTML generated by the stylesheets is reasonably straightforward. However,
there are a few conventions that should be understood and followed. These are
explained in the following sections.

Themes

Page 36

XHTML
All HTML generated should actually be XHTML. This means, among other
things, that all elements must be nested correctly and that all attribute values must
be embedded in double quotes. A good description of the differences between
standard HTML and XHTML is available online at:
http://www.w3schools.com/XHTML/xhtml_html.asp

Themes

 Page 37

CSS
CSS stylesheets should be used where appropriate. A CSS stylesheet should be
named consistently with the XSLT stylesheet that refers to it. For example, IMu
Web’s Browse pages are built using the XSLT stylesheet browse.xsl. CSS styles
which are specific to the Browse pages are placed in a file called browse.css.

Themes

Page 38

Multilingual Pages
If the pages are designed to be multilingual, the stylesheets themselves should
contain no text for display. Instead translations should be added to a strings.xml
file. This file is typically located in the client/themes/shared directory so that
translations can be shared between different themes. The file contains translations
for each of the languages to be displayed and associates the translations with a
logical identifier that can then be used in the XSLT stylesheet.

In this example, each page includes a link at the top labelled My Museum. Because
this link is to appear at the top of every page it is created in the XSLT header
template in the common.xsl stylesheet. However, because the pages are also to be
displayed in French and Arabic the translations must be added to the strings.xml
file and associated with a logical identifier. The entry in the strings.xml file
looks like this:
<?xml version="1.0" encoding="UTF-8"?>
<strings>
 …
 <string id="common-my-museum">
 <value lang="en">My Museum</value>
 <value lang="fr">Mon Musée</value>
 <value lang="ar">يدلب فحتم</value>
 </string>
 …
</strings>

The language of each translation is identified by a two-letter language code. The
string id can then be used in the XSLT which generates the HTML:
<a>
 …
 <imu:string id="common-my-museum"/>

IMu Web automatically replaces the <imu:string> element with the appropriate
translation, depending upon which language is being displayed.

If the pages are designed so that they can be displayed in both left-to-right
languages and right-to-left languages (as was the case in the previous example),
then any CSS styles which specify the horizontal arrangement of elements on the
page should be placed in separate stylesheets. For example, any CSS style which
specifies the position of a div using float:left or float:right should be
placed in a separate stylesheet. Each of the files containing these styles should
have _ltr or _rtl at the end of its name.

For example, IMu Web’s Search page displays different search forms as a set of
tabs. The tab headings themselves are a set of HTML divs. On a left-to-right page
these are displayed floating to the left and on a right-to-left page they should be
displayed floating to the right.

The tab headings are created in the search.xsl stylesheet and each is given a
class of search-tab. The corresponding search.css stylesheet defines styles for
the search-tab class:

Themes

 Page 39

.search-tab
{
 background-color: #484848;
 color: #FFFFFF;
 cursor: pointer;
 font-weight: bold;
 padding-top: 3px;
}

These styles apply regardless of whether the page is displayed left-to-right or
right-to-left. Some other styles differ depending on the orientation of the page.
Styles which should only be applied when the page is being displayed left-to-right
are defined in the search_ltr.css file:
.search-tab
{
 float: left;
 margin-left: 0px;
 margin-right: 10px;
 padding-left: 3px;
}

Styles which should only be applied when the page is being displayed right-to-left
are defined in the search_rtl.css file:
.search-tab
{
 float: right;
 margin-left: 10px;
 margin-right: 0px;
 padding-right: 3px;
}

IMu Web determines the direction to be displayed based on the language and sets
a global XSLT variable, $imu-lang-dir, which contains the value ltr or rtl.
The stylesheet then includes the appropriate file in the include template:
<xsl:template name="include">
 …
 <link rel="stylesheet" type="text/css"
 href="client/themes/london/search.css"/>
 <link rel="stylesheet" type="text/css">
 <xsl:attribute name="href">
 <xsl:text>client/themes/london/search_</xsl:text>
 <xsl:value-of select="$imu-lang-dir"/>
 <xsl:text>.css</xsl:text>
 </xsl:attribute>
 </link>
 …
</xsl:template>

Themes

Page 40

JavaScript
IMu Web pages are typically designed to make use of JavaScript if it is available
but not to be entirely reliant on it. The general design philosophy of IMu Web is to
build pages which operate successfully without JavaScript but allow JavaScript to
be used to enhance the pages.

Areas where JavaScript is used within IMu Web are:

• Show search results as part of the search page, rather than in a separate page
• Add transition effects such as scrolling or fade-in when moving from one

results page to another.
• Provide "pre-searching" such as automatically marking up terms in a page

(such as a list of subjects) with the count of the number of records which
match these terms.

• Simplifying user input by acting immediately when a user chooses a value
from a drop-down list or selects a checkbox. This removes the need for the
user to click a Go or Update button.

None of these is essential to the operation of the pages; they simply "add value".

There are three reasons for designing the standard IMu Web pages this way:

1. It may be a requirement of some organisations that their website can operate
without JavaScript. This is becoming less and less common but it does still
happen.

2. Even if the organisation does not require this, a user may choose to disable
JavaScript in their browser. Similarly, some browsers running on mobile
devices do not always implement JavaScript thoroughly, although this is
changing rapidly.

3. The work of debugging the construction of pages during development is made
much easier if the page can be built and displayed without using JavaScript.

Browsing

S E C T I O N 7

Browsing
IMu Web provides a set of browse pages which allow users to view and navigate
their way through a hierarchical set of EMu Narrative records.

The browse pages are generated by a request of the form:

http://web-server/path/imu.php?request=browse

This request displays a main narrative record and a summary of its sub-narratives.

There is one additional parameter which may be passed to the request:

irn The irn of the record to display as the main narrative. If this
parameter is not used, the master narrative is displayed. The
narrative to be identified as the master narrative may be configured
(see below).

The browse request is handled by an IMuBrowseRequest object. This is defined in
common/browse.php.

The process method of IMuBrowseRequest loads configuration information from
a configuration file, browse.xml. A default browse.xml configuration file is
distributed with IMu Web in the common directory but it may be overridden by a
browse.xml file in the local or client directory as required.

The configuration file can be used to specify:

1. The record to be identified as the master (i.e. top-level) narrative.
2. The set of columns to be retrieved for each narrative.

The record to be identified as the master narrative is configured as follows:
<?xml version="1.0"?>
<browse>
 …
 <master column="DesType_tab">master</master>
 …
</browse>

This specifies a search for the word master in the DesType_tab column. This is
the default defined in the common/browse.xml file. Both the column to be
searched and the value to search for can be changed. For example, the master
narrative can be set by its irn:
 <master column="irn">42</master>

If the IMuBrowseRequest object does not find exactly one matching narrative
which can act as the master, it generates an error.

The set of columns to be retrieved for each narrative is configured in the
<columns> section of the config.xml file as follows:

 Page 41

Browsing

Page 42

<?xml version="1.0"?>
<browse>
 …
 <columns>
 <column>irn</column>
 <column>NarTitle</column>
 <column>NarNarrative{format:html-clean}</column>
 <column>image</column>
 <column>
 children=HieChildNarrativesRef_tab.
 (
 irn,
 NarTitle,
 NarNarrative{format:html-clean},
 image
)
 </column>
 <column>
 trails.
 (
 irn,
 NarTitle
)
 </column>
 </columns>
 …
</browse>

Each column to be fetched from the server is specified in a <column> element.
The format of the column specifications is described in detail in Using KE IMu
API (With PHP).

The column definitions shown in this example are the default ones from
common/browse.xml. This requests that the server provides:

1. The irn of the main narrative.
2. The title of the main narrative (NarTitle).
3. The text of the main narrative (NarNarrative). This column itself contains

HTML. The {format:html-clean} directive that follows the column name
requests that the server reformats the HTML before returning it. The
reformatting serves two purposes:
• It ensures that the HTML in the column is actually reformatted as valid

XHTML. This is essential to ensure that the HTML can be included in
the overall XML document generated by the request.

• It removes any specific font changes in the HTML which can conflict
with the web pages' own styles.

4. The image associated with the narrative. The image column is a virtual
column and does not actually exist in the enarratives table. When a request is
made for the image column, the server looks up the list of multimedia
attached to the record and finds the first which is an image (as opposed to
some other form of multimedia such as document, audio or video) with the
appropriate security allowing it to be displayed.

Browsing

 Page 43

5. The set of breadcrumb trails which indicate the position of this narrative in the
overall narrative hierarchy. The trails column is a virtual column and does
not actually exist in the enarratives table. When a request is made for the
trails column, the server finds the complete set of paths through the
narrative hierarchy from the master (top-level) narrative to the current
narrative based on attachments in the HieChildNarrativesRef_tab column.
For each breadcrumb in each trail the irn and the narrative title are returned.

6. A list of all the main narrative’s "children" (or sub-narratives). The child
narratives are stored as attachments in the HieChildNarrativesRef_tab
column. For each child narrative the server returns its irn, title, the narrative
text (also reformatted) and its associated image.

As described in previous sections, the request retrieves the data from the IMu
server, marks it up as XML and then uses theme-based XSLT stylesheets to
generate the XHTML.

Browsing

Page 44

The XML generated is structured as follows:
<?xml version="1.0"?>
<result>
 <hits>1</hits>
 <rows>
 <row>
 <rownum>1</rownum>
 <irn>11</irn>
 <NarTitle>Fine Art & Sculpture</NarTitle>
 <NarNarrative><p>One of the nation's great artistic and
historic resources, the National Museum's Fine Art & Sculpture
collection includes over 10,000 items - objects and virtual
displays. The collection spans the range of artistic media
from paintings, sculpture, ceramics and tapestries from
the High Renaissance, Mannerist, Baroque, Rococo, and Neoclassical
periods through to the new digital artforms of the present
day.</p></NarNarrative>
 
 <trails>
 <trail>
 <entry>
 <NarTitle>The Museum's Collections</NarTitle>
 <irn>19</irn>
 </entry>
 </trail>
 </trails>
 <children>
 <child>
 <irn>2</irn>
 <NarTitle>Portrait of William Wilberforce</NarTitle>
 <NarNarrative><div><p>This portrait …</NarNarrative>
 
 </child>
 <child>
 …
 </child>
 …
 </children>
 </row>
 </rows>
</result>

A theme’s XSLT stylesheet can process this XML in any way it chooses.

Browsing

 Page 45

Example: IMU Web's london theme
IMu Web’s standard london theme processes this structure as follows:

1. It imports the common.xsl stylesheet.
This means that the browse.xsl is processed as described above:
<xsl:import href="common.xsl"/>

2. It overrides the include template to add in references to its own CSS
stylesheets (both the standard one, browse.xsl, and one for the appropriate
text direction, browse_ltr.css or browse_rtl.css):
<xsl:template name="include">
 <xsl:call-template name="london-common-include"/>

 <link rel="stylesheet" type="text/css"
 href="client/themes/london/browse.css"/>
 <link rel="stylesheet" type="text/css">
 <xsl:attribute name="href">
 <xsl:text>client/themes/london/browse_</xsl:text>
 <xsl:value-of select="$imu-lang-dir"/>
 <xsl:text>.css</xsl:text>
 </xsl:attribute>
 </link>
 <script type="text/javascript"
 src="client/themes/london/browse.js"/>
</xsl:template>

3. It overrides the title template to set the title on the browser window to the
narrative title:
<xsl:template name="title">
 <title>
 <xsl:value-of select="result/rows/row/NarTitle"/>
 </title>
</xsl:template>

4. It overrides the middle template to create the content in the page. Notice that
it does not override the body template, meaning that the standard header and
footer templates defined in common.xsl will be used:
<xsl:template name="middle">
 <div id="browse">
 <xsl:apply-templates select="result/rows/row"/>
 </div>
</xsl:template>

5. The middle template applies a template which matches each row element in
the data.
As each Browse page shows one narrative record there will be only one
matching record.

Browsing

Page 46

6. The matching template first displays a drop-down list to the right of the page:
<xsl:template match="result/rows/row">
 <table id="browse-collection">
 <tr>
 <td style="width:99%"/>
 <td style="width:1%">
 <xsl:call-template
 name="london-common-collection"/>
 </td>
 </tr>
 </table>
 …
</xsl:template>
This allows users to select which of their personal collections they want to be
able to add selected records to. The drop-down list is built using the common
template called london-common-collection. For more details regarding
collections refer to Collections (page 71).

 You will notice that the checkbox is positioned to the right of the screen
using a table. IMu Web uses tables in several places to control the
positioning of elements on the page. This is often considered extremely poor
design and vast ideological battles have been fought in cyberspace over the
use of tables for layout in web pages. Proponents of table-less page layouts
extol the virtues of using floating divs under sophisticated CSS control.
Pages generated by IMu Web need to be extremely portable. They need to
display correctly on a wide variety of browsers offering significantly
different levels of HTML and especially CSS compatibility. They need to be
capable of being displayed with different screen resolutions and font sizes
on both conventional displays and mobile devices. They also need to operate
correctly when displayed in both left-to-right and right-to-left mode.
Additionally, most standard IMu Web pages are designed to use as much of
the screen as possible, rather than be limited to a fixed size which is severely
compromised on wide displays. Coupled with this is the requirement that,
with very few exceptions, the CSS styles used must not specify the size of
elements in absolute sizes, as this is inherently not portable between
browsers and devices and results in areas of the display that do not resize
according to their content.
Currently, the combination of all these requirements makes it extremely
difficult to layout pages without sometimes using tables. There are situations
where a layout generated using floating divs alone simply cannot meet our
requirements. This situation may change with increased standardisation of
browsers but currently there is no sign of it.
This does not, of course, mean that you should not use table-less layouts,
rather that you should be aware that every web page design involves some
form of compromise.

Browsing

7. The template then displays the breadcrumb trails:

<div id="browse-trails">
 <xsl:for-each select="trails/trail">
 <div>
 <xsl:for-each select="entry">
 <xsl:if test="position() > 1">
 <xsl:text> > </xsl:text>
 </xsl:if>
 <a>
 <xsl:attribute name="href">
 <xsl:value-of select="$imu-request"/>
 <xsl:text>&irn=</xsl:text>
 <xsl:value-of select="irn"/>
 </xsl:attribute>
 <xsl:value-of select="NarTitle"/>

 </xsl:for-each>
 </div>
 </xsl:for-each>
</div>
There may be several trails to the narrative. Each is displayed in a separate
div. Each crumb on the trail is displayed using the narrative’s title and is
marked up as a hyperlink. The link’s href attribute is constructed using the
global XSLT processor variable $imu-request. This variable is created by
the PHP IMuWebProcessor object and contains the URL of the request,
including the request= parameter but without any additional parameters. In
other words it contains text like this:
http://web-server/path/imu.php?request=browse

8. The main part of the page is built into a form:
<form>
 <input type="hidden" name="request" value="group"/>
 <input type="hidden" name="action" value="update"/>

 <xsl:call-template name="browse-main"/>
 <xsl:call-template name="browse-children"/>

 <imu:submit class="group-update" value="common-update"/>
</form>
The purpose of the form is to allow users to select narratives in which they are
interested and add them to their collections. Remember that the pages are
designed to operate without requiring JavaScript (page 40).
The form includes two hidden input elements. The request element is set to
group. Group requests are used to add or remove records from a user’s
collection (internally known as a group).

9. The body of the form element is constructed by calling two templates,
browse-main and browse-children. Not surprisingly these are used to build
the HTML to display the main narrative and the child narratives respectively.

 Page 47

Browsing

Page 48

10. The standard form Submit button is created with an <imu:submit> element.
This is used for multi-lingual pages, similar to the way the <imu:string>
element is used. IMu Web interprets the value attribute as a string id - see
Multilingual Pages (page 38) for details - finds the appropriate translation for
the button label and then automatically replaces this element with the standard
<input type="submit"> form element.

The browse-main and browse-children templates are fairly straightforward
XSLT templates and will not be described in detail. The only complexity in the
templates is the provision of a checkbox associated with each narrative (either the
main narrative or a child) which allows the user to add the narrative to (or remove
it from) one of their collections. This is explained in more detail in Collections
(page 71).

The browse pages include some JavaScript. The JavaScript uses JQuery, a third-
party JavaScript library (see http://jquery.com/) to install event handlers into each
checkbox so that when it is clicked, the user’s collection will automatically be
updated without requiring the user to click the Update button.

Search and Display

 Page 49

Search and Display
IMu Web provides a set of search and display pages. These pages allow the user to
search for matching records and view the results.

S E C T I O N 8

Search and Display

Page 50

Search Page
The search pages are generated by a request of the form:

http://web-server/path/imu.php?request=search

This request displays a set of search tabs with the Simple search page shown.

There is one additional parameter which may be passed to the request:

page The name of the search page to be displayed. If this parameter is not
used, the Simple search page is displayed.

The search request is handled by an IMuSearchRequest object. This is defined in
common/search.php. It generates a very simple XML structure:
<?xml version="1.0"?>
<search>
 <page>simple</page>
</search>

The XSLT in the standard london theme is quite straightforward. As was the case
with the stylesheet for the Browse pages, the search.xsl stylesheet implements
the include, title and middle templates.

The include template includes both CSS stylesheets and JavaScript specific to the
Search pages. It also includes CSS stylesheets and JavaScript for the display
pages:
<xsl:template name="include">
 <xsl:call-template name="london-common-include"/>

 <link rel="stylesheet" type="text/css"
 href="client/themes/london/search.css"/>
 <link rel="stylesheet" type="text/css">
 <xsl:attribute name="href">
 <xsl:text>client/themes/london/search_</xsl:text>
 <xsl:value-of select="$imu-lang-dir"/>
 <xsl:text>.css</xsl:text>
 </xsl:attribute>
 </link>
 <script type="text/javascript"
 src="client/themes/london/search.js"/>

 <link rel="stylesheet" type="text/css"
 href="client/themes/london/display.css"/>
 <link rel="stylesheet" type="text/css">
 <xsl:attribute name="href">
 <xsl:text>client/themes/london/display_</xsl:text>
 <xsl:value-of select="$imu-lang-dir"/>
 <xsl:text>.css</xsl:text>
 </xsl:attribute>
 </link>
 <script type="text/javascript"
 src="client/themes/london/display.js"/>
 <script type="text/javascript"
 src="client/themes/london/display/details.js"/>

Search and Display

 <script type="text/javascript"
 src="client/themes/london/display/lightbox.js"/>
 <script type="text/javascript"
 src="client/themes/london/display/list.js"/>
</xsl:template>

The display CSS and JavaScript are included in the search page because IMu Web
can use JavaScript to insert the display results into the search page. The means that
CSS stylesheets and JavaScripts used by the display pages need to be included in
the search page itself.

The middle template is straightforward:
<xsl:template name="middle">
 <div id="search">
 <div id="search-prompt">
 <imu:img src="arrow-down.png"/>
 <imu:string id="search-prompt"/>
 </div>
 <div class="search-area">
 <div id="search-tabs">
 <xsl:call-template name="simple-tab"/>
 <xsl:call-template name="advanced-tab"/>
 …
 </div>
 <div id="search-pages">
 <xsl:call-template name="simple-page"/>
 <xsl:call-template name="advanced-page"/>
 …
 </div>
 </div>
 </div>
</xsl:template>

This creates:

1. A div which contains a Search prompt, preceded by a down arrow.
2. A tab area, showing the name of each search page.
3. A set of search pages, only one of which displays:

If JavaScript is being used, the down arrow next to the Search prompt can be
clicked to hide the entire search area.

 Page 51

Search and Display

Page 52

The tabs are a set of floating divs. Here is the XSLT that creates the Simple tab:
<xsl:template name="simple-tab">
 <div page="simple">
 <xsl:attribute name="class">
 <xsl:text>search-tab</xsl:text>
 <xsl:if test="search/page = 'simple'">
 <xsl:text> search-tab-active</xsl:text>
 </xsl:if>
 </xsl:attribute>
 <a>
 <xsl:attribute name="href">
 <xsl:value-of select="$imu-request"/>
 <xsl:text>&page=simple</xsl:text>
 </xsl:attribute>
 <imu:string id="search-simple"/>

 </div>
</xsl:template>

Each tab is a div containing a single hyperlink used to select a different search
page. As usual, the page is made multilingual by using an <imu:string> element
for the tab label. The tabs are coloured differently by having the CSS class
search-tab-active added to the div if it is the selected tab. Here is the relevant
section from the search.css file:
.search-tab
{
 background-color: #484848;
 color: #FFFFFF;
 cursor: pointer;
 font-weight: bold;
 padding-top: 3px;
}

.search-tab-active
{
 background-color: #336FC5;
}

.search-tab a
{
 color: #FFFFFF;
 text-decoration: none;
}

The styles which float the divs, either to the left or the right, are in separate
stylesheets. This is described in Multilingual Pages (page 38).

Search and Display

The search pages are built in a similar fashion. Each search page is a div
containing a form. Here is the XSLT that builds the Simple search page:
<xsl:template name="simple-page">
 <div page="simple">
 <xsl:attribute name="class">
 <xsl:text>search-page</xsl:text>
 <xsl:if test="search/page = 'simple'">
 <xsl:text> search-page-active</xsl:text>
 </xsl:if>
 </xsl:attribute>
 <form>
 <input type="hidden" name="request" value="load"/>
 <table>
 <tr>
 <td class="search-prompt">
 <imu:string id="search-field-keywords"/>
 <xsl:text>:</xsl:text>
 </td>
 <td>
 <input type="text" name="keywords"/>
 </td>
 </tr>
 <tr>
 <td class="search-prompt">
 <imu:string id="search-field-images"/>
 <xsl:text>:</xsl:text>
 </td>
 <td>
 <input type="checkbox"
 name="MulHasMultiMedia"
 value="Y"/>
 </td>
 </tr>
 </table>
 <imu:submit value="search-button"/>
 </form>
 </div>
</xsl:template>

There are several things to note here. All pages comprise a div which has a CSS
class of search-page. The selected page also has a class of search-page-
active. In the search.css CSS stylesheet the search-page class is defined to
make the div invisible while the search-page-active class overrides this and
makes the selected page visible:
.search-page
{
 display: none;
 …
}

.search-page-active
{
 display: block;
}

 Page 53

Search and Display

Page 54

The form has a hidden input element. This ensures that the form submits a
request such as:
http://web-server/path/imu.php?request=load

The actual form prompts, such as "Keywords" and "Items with images", are added
to the form using <imu:string> elements.

The form input elements are given names that will be passed directly to the load
request when the form is submitted. Each name may be either the name of an
actual column in an EMu table or a search alias. In the case of Simple search page
shown above the "Items with images" checkbox, the name (HasMultimedia)
corresponds directly to a column in an EMu table. The "Keywords" textbox has a
name (keywords) which is a search alias. Search aliases are explained in more
detail below.

As with the Browse pages, each form’s submit button is added to the page using
an <imu:submit> element.

Search and Display

 Page 55

Running a Search
When a search form is completed and submitted, the page generates an IMu Web
load request. The load request is responsible for executing the search and
generating a result set.

The load request is handled by an IMuLoadRequest object. This is defined in
common/load.php.

The process method of IMuLoadRequest loads configuration information from a
configuration file, modules.xml, which is usually located in the client directory.

The configuration file can be used to specify:

1. The set of EMu modules to be searched and the order in which they are to be
searched.

2. Search aliases.
3. Record views.

Set of EMu modules

The set of EMu modules to be searched is configured in the include section of
the confirmation file as follows:
<?xml version="1.0"?>
<modules>
 …
 <include>
 <module>enarratives</module>
 <module>ecatalogue</module>
 <module>eparties</module>
 </include>
 …
</modules>

The order in which the modules are to be searched is defined by the order they are
listed in the include section.

This list represents the full set of modules to be searched. A request can explicitly
reduce the number of modules to be searched by passing a parameter:
http://web-server/path/imu.php?request=load...&ecatalogue=off...

This will mean that this load request will not include the ecatalogue module in the
set of modules it searches.

Search and Display

Page 56

Search alias
A search alias associates a set of columns in different modules with a logical
name. Search aliases are defined in the modules.xml file as follows:
<?xml version="1.0"?>
<modules>
 …
 <aliases>
 …
 <alias id="keywords">
 <module id="enarratives">
 <column>DesSubjects_tab</column>
 <column>NarNarrative</column>
 <column>NarTitle</column>
 <column>SummaryData</column>
 </module>
 <module id="ecatalogue">
 <column>CreSubjectClassification_tab</column>
 <column>SummaryData</column>
 </module>
 <module id="eparties">
 <column>BioCommencementNotes</column>
 <column>SummaryData</column>
 </module>
 </alias>
 …
 </aliases>
 …
</modules>

This entry creates an alias called "keywords" and associates it with a different set
of columns to be searched in each of three different modules. The effect of the
alias is that when a search term such as keywords=design is submitted to the
load request the search which is actually executed by the server is an OR search
across different columns in the different modules being searched. This is a
powerful feature of IMu Web as it allows generic search forms, such as the Simple
form described above, to be built easily.

Search and Display

 Page 57

Record view
A record view is similar to a search alias in that it associates a set of columns in
different modules with a logical name. Views are defined as follows:
<?xml version="1.0"?>
<modules>
 …
 <views>
 <defaults>
 <module id="enarratives">
 <column>NarTitle</column>
 …
 </module>
 <module id="ecatalogue">
 <column>SummaryData</column>
 …
 </module>
 <module id="eparties">
 <column>NamPartyType</column>
 …
 </module>
 </defaults>

 <view id="details">
 <count>1</count>
 <module id="enarratives">
 <column>DesSubjects_tab</column>
 <column>DesType_tab</column>
 …
 </module>
 <module id="ecatalogue">
 <column>AssOtherAssociationNotes0</column>
 <column>CreDateCreated</column>
 …
 </module>
 <module id="eparties">
 <column>AddPhysCity</column>
 <column>AddPhysCountry</column> …
 …
 </module>
 </view>
 …
 <view id="list">
 <count>6</count>
 <module id="enarratives">
 <column>NarNarrative{format:html-strip}</column>
 …
 </module>
 <module id="ecatalogue">
 <column>PhyDescription</column>
 <column>CreDateCreated</column>
 …
 </module>
 <module id="eparties"/>
 </view>
 </views>
 …
</modules>

Search and Display

Page 58

These entries create two views, one called details and one called list. Each
view defines two pieces of information:

• The default number of records to be fetched (specified in the <count>
element).

• The list of columns to be fetched from each module.

The <defaults> section is used to specify additional columns to be fetched for
each module, regardless of which view is being used. This is provided for
convenience to save having to list the same columns in each view.

 The set of columns defined for a view represents what the lower level IMu
API calls a Fetch Set. Fetch Sets, and their use when searching across
several modules (as IMu Web does), are described in more detail in Using
KE IMu API (With PHP).

The load request

The load request is used to create a result set containing matching records from
several modules. Typically this is done by executing a search in which case the
parameters passed to the request are usually either search alias names or EMu
column names.

For example, a simple search using a keywords alias can be run using the URL:
http://.../imu.php?request=load&keywords=design

When preparing for a search the load request looks for two special types of
parameters:

• column
• value

These can be used to specify the column (or alias) for the search and the value to
search for. The request can include any number of these parameters,
column1/value1, column2/value2 and so on.

The previous search can also be run using a URL like this:
http://.../imu.php?request=load&column1=keywords&value1=design

This method of specifying a search allows you to build search forms where the
user can select which fields are to be searched. For example:

In this example the text box is given the name value1 and the drop-down list is
given the value column1. Here is the HTML fragment to build this form:

Search and Display

 Page 59

<form>
 …
 <input type="hidden" name="request" value="load"/>
 …
 <table>
 <tr>
 <td class="search-prompt">Search for:</td>
 <td>
 <input type="text" name="value1"/>
 </td>
 </tr>
 <tr>
 <td class="search-prompt">In:</td>
 <td>
 <select name="column1">
 <option name="keywords">Keywords</option>
 <option name="title">Title</option>
 <option name="SummaryData">Summary Data</option>
 </select>
 </td>
 </tr>
 …
 <table>
 …
</form>

In addition to running a search, the load request can also create a result set by
restoring a set of records saved in a collection. This is described in more detail in
My Museum (page 75).

Once the load request has created the result set it then redirects the browser to a
display request to display the first set of results.

Search and Display

Page 60

Displaying Results
Pages of results are built by the display request.

The display request requires two parameters:

port The number of the port to be used to re-connect to the IMu server.
id The id of the server-side handler created by the load request.

Both of these parameters are needed to allow the display request to use the result
set created by the load request. The role of the port and id parameters is
described in detail in the Maintain State section of Using KE IMu API (With
PHP).

There are several additional parameters which may be passed to the request:

flag
offset

The flag and offset parameters define the starting position of the
block of records in the result set to be used to build the page.
The flag parameter is a string and can be either one of start, current
or end or the name of one of the modules listed in the include section of
modules.xml.
If a flag parameter is not included in the request, it defaults to start.
The offset parameter is an integer. It adjusts the starting position
relative to the flag parameter. A positive value for offset specifies a
start after the position specified by flag and a negative value specifies a
start before the position specified by flag.
If an offset parameter is not included in the request, it defaults to 0.

view The name of the view to be used. This must be the name of one of the
views defined in the views section of modules.xml. If a view parameter
is not included in the request, it defaults to the <default-view> value
defined in the config.xml file. This defines the set of columns to be
fetched from the server for each record.

count The number of records to be fetched to build the page. If this parameter is
not included in the request, or is the word default, it defaults to the
value defined in the <count> element for the chosen view.

format The format of the data the request should generate. This must be one of:
html, json, or xml.
If this parameter is not included in the request, it defaults to html.

The display request connects to the server on the supplied port and uses the id
to identify the result set it wants to use. It then fetches the data in the columns
specified by the view parameter for the set of records defined by the flag, offset
and count parameters. Once the data has been fetched by the server the request
processes the data and outputs it in the required format.

If the output format requested is json or xml, the processing of the data is

Search and Display

 Page 61

straightforward. If the format is json, the data returned by the server is simply
marked up in JavaScript Object Notation (JSON) and delivered to the browser. If
the format is xml, the display request builds a DOM document from the data
returned by the server and then generates an XML document from that.

If the output format requested is html, the data from the server is processed in the
same way as described for the Browse pages above. The data is marked up as
XML and then transformed using theme-based XSLT stylesheets to generate the
XHTML.

The XML created is structured as follows:
<?xml version="1.0"?>
<result>
 <count>6</count>
 <modules>
 <module>
 <name>enarratives</name>
 <index>0</index>
 <hits>16</hits>
 <rows>
 <row>
 <rownum>15</rownum>
 <irn>50</irn>
 <NarTitle>Face and Place…</NarTitle>
 <NarNarrative>A dramatic growth in…</NarNarrative>
 …
 </row>
 <row>
 <rownum>16</rownum>
 <irn>52</irn>
 <NarTitle>…</NarTitle>
 <NarNarrative>…</NarNarrative>
 …
 </row>
 </rows>
 </module>
 <module>
 <name>ecatalogue</name>
 <index>1</index>
 <hits>7</hits>
 <rows>
 <row>
 <rownum>1</rownum>
 <irn>100037</irn>
 <TitMainTitle>Dress from …</TitMainTitle>
 </row>
 <row>
 <rownum>2</rownum>
 <irn>107939</irn>
 <TitMainTitle>The Maestro's Company</TitMainTitle>
 </row>
 <row>
 <rownum>3</rownum>
 …
 </row>
 <row>
 <rownum>4</rownum>

Search and Display

Page 62

 …
 </row>
 </rows>
 </module>
 </modules>
 <current>
 <flag>enarratives</flag>
 <offset>14</offset>
 </current>
 <prev>
 <flag>enarratives</flag>
 <offset>8</offset>
 </prev>
 <next>
 <flag>ecatalogue</flag>
 <offset>4</offset>
 </next>
 <links>
 <link>
 <module>enarratives</module>
 <url>/artdemo/imu.php?request=display&port=…</url>
 </link>
 <link>
 <module>ecatalogue</module>
 <url>/artdemo/imu.php?request=display&port=…</url>
 </link>
 <link>
 <module>eparties</module>
 <url>/artdemo/imu.php?request=display&port=…</url>
 </link>
 </links>
</result>

The <count> element indicates the number of records fetched. The records
retrieved are grouped by module in the <modules> section. In this example six
records were retrieved. The first two records came from the Narratives module and
the remaining four came from the Catalogue module. This means that the
<modules> section contains two <module> sections, one for Narratives
(enarratives) and one for the Catalogue (ecatalogue).

Each <module> section includes the following elements:

<name> The name of the module (enarratives, ecatalogue, etc.).
<index> The position of the module in the list of modules in the <include>

section of the modules.xml file.
<hits> An estimate of the number of matching records for this module in the

result set. This is the same as the information returned by the browse
request.

<rows> The data for each record.

This XML is processed in a similar way to the Browse pages described in the
previous section. The display request loads a stylesheet specific to the view
selected:
$xslt = $this->newStylesheet('display/' . $result->view);

Search and Display

 Page 63

For example, if the list view is selected, the main stylesheet used to process the
XML will be display/list.xsl. The stylesheet for each specific view imports a
more general display.xsl and a separate stylesheet for each module which may
be displayed:
<xsl:import href="../display.xsl"/>
<xsl:import href="list-ecatalogue.xsl"/>
<xsl:import href="list-enarratives.xsl"/>
<xsl:import href="list-eparties.xsl"/>

The display.xsl stylesheet in turn imports common.xsl in the same way as
browse.xsl and then overrides the middle template:
<xsl:template name="middle">
 <div class="display">
 <table class="display-toolbar">
 …
 </table>

 <div class="display-region">
 <div class="display-content">
 <xsl:attribute name="url">
 <xsl:value-of select="$imu-url"/>
 </xsl:attribute>
 <xsl:call-template name="display-content"/>
 </div>
 </div>
 </div>
</xsl:template>

The middle template builds a framework common to all views. The framework
consists of an outer div with a class attribute set to display and two inner divs.
The class attributes are important as they are used by JavaScript code when
implementing transition effects such as scrolling or fading from one page to the
next.

The middle template then calls the display-content template. This template
implements a specific view and is, not surprisingly, defined in the view-specific
stylesheet.

Search and Display

Page 64

Example: List view
By way of example, here is how the list view is built.

The stylesheet is in the display/list.xsl file. It implements the display-
content template as follows:
<xsl:template name="display-content">
 <xsl:call-template name="london-display-navigation"/>
 <form>
 <input type="hidden" name="request" value="group"/>
 <input type="hidden" name="action" value="update"/>
 <div class="display-area">
 <div class="display-page">
 <xsl:call-template name="list-page"/>
 </div>
 </div>
 <imu:submit class="group-update" value="common-update"/>
 </form>
</xsl:template>

The template builds a form which allows users to add records in which they are
interested to their collections. It then calls a template which generates output for
each record to be displayed:
<xsl:template name="list-page">
 <table class="list-table">
 <xsl:for-each select="result/modules/module/rows/row">
 <tr>
 <xsl:call-template name="list-row"/>
 </tr>
 </xsl:for-each>
 </table>
</xsl:template>

The list-row template constructs an HTML framework for each record and
finally calls a template that is specific to the module from which the record comes:
<xsl:template name="list-row">
 …
 <td style="width:99%">
 <div class="list-content">
 <xsl:choose>
 <xsl:when test="../../name = 'ecatalogue'">
 <xsl:call-template name="list-ecatalogue"/>
 </xsl:when>
 <xsl:when test="../../name = 'enarratives'">
 <xsl:call-template name="list-enarratives"/>
 </xsl:when>
 <xsl:when test="../../name = 'eparties'">
 <xsl:call-template name="list-eparties"/>
 </xsl:when>
 </xsl:choose>
 </div>
 </td>
 …
</xsl:template>

The module-specific templates are defined in the modules specific stylesheets

Search and Display

 Page 65

imported at the top of display/list.xsl. For example, the list-enarratives
template is defined in display/list-enarratives.xsl. These templates
generate the actual content. For example, the list view of a Narrative record is
generated as follows:
<xsl:template name="list-enarratives">
 <table class="list-header">
 <tr>
 <td class="list-title">
 <a>
 <xsl:attribute name="href">
 <xsl:value-of select="$imu-display"/>
 <xsl:text>&flag=</xsl:text>
 <xsl:value-of select="../../name"/>
 <xsl:text>&offset=</xsl:text>
 <xsl:value-of select="rownum - 1"/>
 <xsl:text>&count=default</xsl:text>
 <xsl:text>&view=details</xsl:text>
 </xsl:attribute>
 <xsl:value-of select="NarTitle"/>

 </td>
 <td class="list-select">
 <xsl:call-template name="london-display-checkbox"/>
 </td>
 </tr>
 </table>
 <xsl:value-of select="NarNarrative"/>
</xsl:template>

This includes three components: the narrative title, the narrative text and a
checkbox (used for adding the record to a collection). The title is marked up as a
link to display the narrative record details.

The XSLT to generate other views (e.g. lightbox and details) uses the same
technique.

Search and Display

Page 66

JavaScript
The search and display pages can operate without the need for JavaScript.
However, where JavaScript is available these pages will make use of it. JavaScript
is used to:

• Add a record to a collection without requiring the user to click the Update
button.

• Allow the user to hide the search forms.
• Switch between search tabs without having to resubmit the page.
• Incorporate the search results into the search page rather than displaying on a

separate page.
• Provide special transition effects when moving from one results page to

another.

User Preferences

 Page 67

User Preferences
When a user requests any IMu Web page, the base request handler checks whether
a cookie has been set in the user’s browser. By default the cookie is called IMu
(although it can be changed in config.xml, as described above). If the cookie
does not exist, the request handler assumes that this is the user’s first visit to the
website. The handler creates a new record for the user in the EMu ewebusers
table. This record stores the user’s IP address, their preferred language and theme
and whether they want to use JavaScript or not. These values are initially set to the
defaults defined in config.xml (page 25).

The request then stores information back into the cookie. Most importantly it
stores the irn of the ewebusers records for that user so that it will be able to find
the information about the user again. When the cookie is stored it is given a
duration which controls how long until it is no longer valid and will not be
submitted by the browser along with a request. By default the cookie is valid for 7
days. The cookie’s expiry date is updated every time an IMu Web request is
submitted.

The standard IMu Web pages allow the user to change the theme and the language
to be used from any page. For example, the london theme includes these drop
down lists at the top of each page:

The page contains two HTML forms. The XSLT to generate these forms is found
in the header template in the common.xsl stylesheet:

S E C T I O N 9

User Preferences

Page 68

<xsl:template name="header">
 <table id="header-top">
 <tr>
 …
 <td id="header-theme">
 <form style="display:inline">
 <input type="hidden" name="request" value="config"/>
 <imu:string id="common-theme"/>
 <xsl:text>: </xsl:text>
 <imu:select type="themes" name="theme"/>
 <imu:submit value="common-go"/>
 </form>
 </td>
 <td id="header-language">
 <form style="display:inline">
 <input type="hidden" name="request" value="config"/>
 <imu:string id="common-language"/>
 <xsl:text>: </xsl:text>
 <xsl:call-template name="london-common-language"/>
 <imu:submit value="common-go"/>
 </form>
 </td>
 </tr>
 </table>
 …
</xsl:template>

Each form is configured to submit a config request (this is the role of the hidden
input element in each form).

The drop-down list of themes is generated using an <imu:select
type="themes"> element. When the HTML is generated, this element is replaced
with an HTML <select> element containing all of the available themes:
<select name="theme">
 <option value="london" selected="selected">London</option>
 <option value="new-york">New York</option>
</select>

When the user clicks on the Go button to the right of the list of themes the form is
submitted with a theme parameter, such as:
http://.../imu.php?request=config&theme=new-york

When the request is processed the PreferredTheme column of the users record is
updated.

The language form operates similarly. The list of languages is generated by a
common template, common-language:

User Preferences

<xsl:template name="london-common-language">
 <select name="lang">
 <option value="en">
 <xsl:if test="$imu-lang = 'en'">
 <xsl:attribute name="selected">
 <xsl:text>selected</xsl:text>
 </xsl:attribute>
 </xsl:if>
 <xsl:text>English</xsl:text>
 </option>
 <option value="fr">
 <xsl:if test="$imu-lang = 'fr'">
 <xsl:attribute name="selected">
 <xsl:text>selected</xsl:text>
 </xsl:attribute>
 </xsl:if>
 <xsl:text>Français</xsl:text>
 </option>
 <option value="ar">
 <xsl:if test="$imu-lang = 'ar'">
 <xsl:attribute name="selected">
 <xsl:text>selected</xsl:text>
 </xsl:attribute>
 </xsl:if>
 <xsl:text>ةيبرعلا</xsl:text>
 </option>
 </select>
</xsl:template>

When the user clicks on the Go button to the right of the list of languages the form
is submitted with a lang parameter, such as:
http://.../imu.php?request=config&lang=fr

When the request is processed the PreferredLanguage column of the users
record is updated.

The config request does not generate any output. Instead it redirects the browser
back to the page it came from.

When JavaScript is enabled (page 75) the standard IMu Web JavaScript installs
events handlers for both of the drop-down lists so that the form is submitted as
soon as a value in the list is chosen. This makes the Go buttons redundant so the
JavaScript hides them.

 If the Go buttons are visible it is a pretty good indication that JavaScript is
not enabled (or that the JavaScript has crashed before hiding the buttons).

 Page 69

Collections

S E C T I O N 1 0

Collections
Collections are like shopping carts. They allow the user to create one of more sets
of records that they can see and use later.

The information for a collection is stored in EMu’s ewebgroups table. This table is
similar to the egroups table used by the EMu client. Each ewebgroups record
contains the name of a collection and the set of records included in the collection.
Unlike EMu client groups, IMu Web collections can contain records from several
tables. For this reason ewebgroups records the name of each module along with its
irn for each member of the collection.

When a user first requests an IMu Web page - see User Preferences (page 67)- an
empty collection called My Collection is automatically created. When the user
visits any of the browse or display pages they can add records to this collection by
selecting the checkbox associated with the record. The checkboxes are added to
these pages using an XSLT template defined in common.xsl:

 Page 71

Collections

Page 72

<xsl:template name="london-common-checkbox">
 <xsl:param name="suffix"/>
 <xsl:param name="module"/>
 <xsl:param name="key"/>

 <input type="hidden">
 <xsl:attribute name="name">
 <xsl:text>module</xsl:text>
 <xsl:value-of select="$suffix"/>
 </xsl:attribute>
 <xsl:attribute name="value">
 <xsl:value-of select="$module"/>
 </xsl:attribute>
 </input>
 <input type="hidden">
 <xsl:attribute name="name">
 <xsl:text>key</xsl:text>
 <xsl:value-of select="$suffix"/>
 </xsl:attribute>
 <xsl:attribute name="value">
 <xsl:value-of select="$key"/>
 </xsl:attribute>
 </input>
 <input class="group-checkbox" type="checkbox">
 <xsl:attribute name="name">
 <xsl:text>state</xsl:text>
 <xsl:value-of select="$suffix"/>
 </xsl:attribute>
 <xsl:attribute name="module">
 <xsl:value-of select="$module"/>
 </xsl:attribute>
 <xsl:attribute name="key">
 <xsl:value-of select="$key"/>
 </xsl:attribute>
 </input>
</xsl:template>

The template takes three parameters, a suffix, a module and a key.

The suffix is the number of the checkbox in the form. As the name implies it is
appended to the name of some of the input elements in the form. This is needed
because the set of parameters generated must be distinct for each checkbox when
the form is submitted without JavaScript.

The module and key parameters are simply the name of the module and the irn
(key) of the record associated with the checkbox. Suppose this template was called
as follows:
<xsl:call-template name="1ondon-common-checkbox">
 <xsl:with-param name="suffix">
 <xsl:text>1<xsl:text>
 </xsl:with-param>
 <xsl:with-param name="module">
 <xsl:text>eparties</xsl:text>
 </xsl:with-param>
 <xsl:with-param name="key">
 <xsl:text>7</xsl:text>
 </xsl:with-param>
</xsl:call-template>

Collections

The HTML generated would contain three form <input> elements, two hidden
and one checkbox:
<input type="hidden" name="module1" value="eparties"/>
<input type="hidden" name="key1" value="7"/>
<input type="checkbox" name="state1" module="eparties" key="7"/>

All of this seems incredibly complicated just to add a checkbox to a page but the
checkboxes must be able to operate both with JavaScript and as part of a form
submitted without using JavaScript.

If JavaScript is not enabled, the user can select as many records on the page as
they want and then click the Update button at the bottom of the page. This submits
an IMu Web group request with an action parameter of update, such as:
http://...&action=update&module1=eparties&key1=7&state1=on&...

This updates the collection, adding entries for records where the state is set to on
(such as in this example) and removing records where the state is not specified or
is set to off.

If the user has JavaScript enabled, the record is updated in a slightly different
way. The JavaScript installs an event handler on each checkbox. When the
checkbox is clicked the event handler extracts the module and key attributes from
the checkbox element and submits a different group request using AJAX. The
request sets the action parameter to add, such as:
http://.../imu.php?request=group&action=add&module=eparties&key=7

This causes the Parties record with irn 7 to be added to the user’s default
collection.

The user can rename a collection, create other collections and see the contents of
any collection from the My Museum page.

 Page 73

My Museum

 Page 75

My Museum
IMu Web includes a My Museum page. The page is divided into two sections. The
General section allows the user to update their preferences. The Collections
section allows them to manage their collections:

The page is generated by a request of the form:

http://web-server/path/imu.php?request=museum

To build the General section, the museum request retrieves the information from
the user’s ewebusers record - see User Preferences (page 67). As with the other
IMu Web pages, the request first generates XML and then transforms it into
XHMTL using XSLT. The XML used to build the General section is a follows:
<?xml version="1.0"?>
Museum Artifacts
 …
 <irn>86</irn>
 <IPAddress>172.16.57.34</IPAddress>
 <PreferredLanguage>en</PreferredLanguage>
 <PreferredTheme>london</PreferredTheme>
 <UseJavascript>yes</UseJavascript>
 …
</museum>

The museum.xsl stylesheet used to transform this XML builds a simple form
which displays this information and allows the user to change it:

S E C T I O N 1 1

My Museum

Page 76

<xsl:template name="museum-general">
 <div class="museum-area" id="museum-general">
 <h1><imu:string id="museum-general"/></h1>
 <form>
 <input type="hidden" name="request" value="config"/>
 <table>
 <tr>
 <td>
 <imu:string id="museum-language"/>
 <xsl:text>:</xsl:text>
 </td>
 <td>
 <xsl:call-template name="london-common-language"/>
 </td>
 </tr>
 <tr>
 <td>
 <imu:string id="museum-theme"/>
 <xsl:text>:</xsl:text>
 </td>
 <td>
 <imu:select type="themes" name="theme"/>
 </td>
 </tr>
 <tr>
 <td>
 <imu:string id="museum-javascript"/>
 <xsl:text>:</xsl:text>
 </td>
 <td>
 <input type="radio" name="javascript" value="yes">
 <xsl:if test="UseJavascript = 'yes'">
 <xsl:attribute name="checked">
 <xsl:text>checked</xsl:text>
 </xsl:attribute>
 </xsl:if>
 <imu:string id="common-yes"/>
 </input>
 <input type="radio" name="javascript" value="no">
 <xsl:if test="UseJavascript != 'yes'">
 <xsl:attribute name="checked">
 <xsl:text>checked</xsl:text>
 </xsl:attribute>
 </xsl:if>
 <imu:string id="common-no"/>
 </input>
 </td>
 </tr>
 </table>
 <div id="museum-update">
 <imu:submit value="common-update"/>
 </div>
 </form>
 </div>
</xsl:template>

Notice that the theme and language drop-down lists are built in the way described
in User Preferences (page 67).

My Museum

When this form is submitted it generates a config request, the same request
described in User Preferences (page 67). For example:
http://.../imu.php?request=config&theme=london&lang=fr&javascript=
yes

This request updates the user’s ewebusers record and refreshes the cookie in the
browser.

The Collections section displays the set of collections created by the user. The
XML used to build the Collections section is as follows:
<?xml version="1.0"?>
Museum Artifacts
 …
 <count>2</count>
 <groups>
 <group>
 <irn>93</irn>
 <GroupName>My Collection</GroupName>
 <count>2</count>
 <entries>
 <entry>
 <module>enarratives</module>
 <key>120002</key>
 </entry>
 <entry>
 <module>ecatalogue</module>
 <key>115686</key>
 </entry>
 </entries>
 <default>no</default>
 </group>
 <group>
 <irn>94</irn>
 <GroupName>Things to see</GroupName>
 <count>3</count>
 <entries>
 <entry>
 <module>enarratives</module>
 <key>1000142</key>
 </entry>
 <entry>
 <module>enarratives</module>
 <key>1000069</key>
 </entry>
 <entry>
 <module>ecatalogue</module>
 <key>120033</key>
 </entry>
 </entries>
 <default>yes</default>
 </group>
 </groups>
 …
</museum>

The XSLT which transforms this XML is straightforward. The list of collections is
shown in a table. For each collection it includes the collection name and the

 Page 77

My Museum

Page 78

number of entries in the collection:
<xsl:template match="groups/group">
 <tr>
 <td class="museum-action">
 <xsl:if test="count(../group) > 1">
 <a>
 <xsl:attribute name="href">
 <xsl:value-of select="$imu-script"/>
 <xsl:text>?request=group</xsl:text>
 <xsl:text>&action=delete</xsl:text>
 <xsl:text>&irn=</xsl:text>
 <xsl:value-of select="irn"/>
 </xsl:attribute>
 <imu:img src="delete.png"/>

 </xsl:if>
 </td>
 <td class="museum-name">
 <a>
 <xsl:attribute name="href">
 <xsl:value-of select="$imu-script"/>
 <xsl:text>?request=collection</xsl:text>
 <xsl:text>&irn=</xsl:text>
 <xsl:value-of select="irn"/>
 </xsl:attribute>
 <xsl:value-of select="GroupName"/>

 </td>
 <td class="museum-count">
 <xsl:value-of select="count"/>
 </td>
 </tr>
</xsl:template>

The name is marked up as a link. Clicking on a link submits a request such as:
http://.../imu.php?request=collection&irn=94

This request displays the details for this collection. This is described below.

Associated with each collection is an image (in this case delete.png). This image
is marked up as a link. Clicking on the link submits a request such as:
http://.../imu.php?request=group&action=delete&irn=94

This request deletes the collection.

My Museum

 Page 79

Collection Details
When a user clicks on a collection name an IMu Web collection request is
generated. This displays details of the collection:

The collection request generates XML as follows:
<?xml version="1.0"?>
<collection>
 <irn>94</irn>
 <name>Things to see</name>
 <count>3</count>
 <entries>
 <entry>
 <module>enarratives</module>
 <key>1000142</key>
 </entry>
 <entry>
 <module>enarratives</module>
 <key>1000069</key>
 </entry>
 <entry>
 <module>ecatalogue</module>
 <key>120033</key>
 </entry>
 </entries>
</collection>

My Museum

Page 80

The processing of this XML is straightforward. The XSLT stylesheet creates
HTML that displays the name of the collection and the number of items in the
collection. The name is displayed in a text box. This allows the user to change the
name and then update the collection record by clicking the Update button. This
submits a group request with an action of rename, such as:
http://...&action=rename&irn=94&name=Stuff+to+see

If JavaScript is not enabled, the number of records is marked up as a link. Clicking
the link displays the first page of records in the collection, in exactly the same way
as the results of a search are displayed.

If JavaScript is enabled, the first page of records in the collection is automatically
displayed below the collection details (as shown in the screenshot above). This is
also identical with the way search results are displayed below the search form
when JavaScript is enabled.

Deployment

S E C T I O N 1 2

Deployment
Deploying IMu Web to a client is relatively straightforward. Much of the setup is
similar to that described in Development Setup (page 5) and you should ensure that
you have read and understood that section before trying to deploy IMu Web on a
client site.

 Page 81

Deployment

Page 82

Client back-end and IMu Server
The client’s back-end EMu environment must be upgraded to run EMu version
4.0.02 or later. The IMu server must be configured in the same way as described
in Development Setup (page 5).

Deployment

Bundling the Development Environment
To deploy IMu Web pages all that is required is to copy the lib and web
directories used in the development environment to the client’s web server
machine.

The simplest way to copy the files is to first create a "tar ball" on the development
machine.

 A tar ball is an archive of several files bundled using the Unix tar command
and compressed using the Unix gzip command.

For example, suppose we have developed a set of pages in the IMu eqag
environment on a development machine. To create the tar ball:
development-server$ client eqag
development-server$ tar cvf – lib web | gzip >deploy.tgz

This tar ball (in this case deploy.tgz) must then be transferred to the client’s web
server machine.

 Page 83

Deployment

Page 84

Installing the Bundle
Once the tar ball has been transferred to the client’s development environment the
files must be extracted and placed somewhere where the web server can get access
to them. There are many ways that this can be achieved and the method you use
will mainly depend on constraints imposed by the administrators of the web
server.

Ideally the setup on the client’s web server will be the same as on the development
machine as described in Development Setup (page 5) and involves setting up an
imu user account and placing the imu user in an imuadmin group. This setup is
preferred as it provides some additional security.

However, some site administrators may not allow a new user and group to be
created. In this case the simplest thing to do is to create a directory owned by the
user running the web server.

Once this has been done then the bundled files simply need to be extracted:
client-web-server$ mkdir eqag
client-web-server$ cd eqag
client-web-server$ gunzip –c deploy.tgz | tar xvf -

This will create the lib and web directories under the eqag directory.

Deployment

Client’s Web Server Setup
Once the IMu Web files have been installed on the client’s web server machine,
the client’s web server machine must be setup. This setup must be done in the
same way as described in Development Setup (page 5). This requires ensuring that
the web server is configured to run PHP 5.0 or later, that the required PHP
extensions (ctype, dom, json and xsl) are all enabled and that a suitable mapping
between an IMU Web URL and the actual base directory is created.

 Page 85

Index
B

Browsing • 41

Bundling the Development Environment •
83

C

Client back-end and IMu Server • 82

Client’s Web Server Setup • 85

Collection Details • 79

Collections • 45, 47, 71

Configuration • 25, 33, 67

Creating a request-specific object • 24

CSS • 37
D

Deployment • 81

Development Setup • 5, 17, 81, 82, 84, 85

Displaying Results • 59
E

Example
IMU Web's london theme • 44
List view • 62

G

Generating output • 29
H

How a request is processed • 17

How the XSLT is processed • 33
I

IMu Server • 6

Installing the Bundle • 84

Installing the IMu software • 12

Introduction • 1
J

JavaScript • 40, 46, 65
L

Loading the IMu API • 18

Loading the request-specific file • 22

M

Multilingual Pages • 38, 47, 52

My Museum • 58, 69, 75
O

Overview • 3
P

Processing • 27

Processing a request • 4
R

Record view • 55

Request parameters • 21

Running a Search • 54
S

Search alias • 54

Search and Display • 49

Search Page • 50

Set of EMu modules • 54

Setting up a Web Server • 14
T

The load request • 56

Themes • 31

Tracing • 19
U

User Preferences • 67, 71, 75, 76
X

XHTML • 36

XSLT • 32

	Processing a request
	IMu Server
	Installing the IMu software
	Setting up a Web Server
	Loading the IMu API
	Tracing
	Request parameters
	Loading the request-specific file
	Creating a request-specific object
	Configuration
	Processing
	XSLT
	How the XSLT is processed
	XHTML
	CSS
	Multilingual Pages
	JavaScript
	Example: IMU Web's london theme
	Search Page
	Running a Search
	Set of EMu modules
	Search alias
	Record view
	The load request

	Displaying Results
	Example: List view

	JavaScript
	Collection Details
	Client back-end and IMu Server
	Bundling the Development Environment
	Installing the Bundle
	Client’s Web Server Setup
	Index

